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In this paper, we study the problem of recovering a tensor with missing data. We propose a

new model combining the total variation regularization and low-rank matrix factorization. A

block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed opti-

mization model. We theoretically show that under some mild conditions, the algorithm con-

verges to the coordinatewise minimizers. Experimental results are reported to demonstrate

the effectiveness of the proposed model and the efficiency of the numerical scheme.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

As a high-dimensional extension of matrix, tensor is an important big data format, which plays a significant role in a wide

range of real-world applications [19,31–36]. Among them, one important problem is to estimate the missing data from the

observed incomplete data, e.g., image inpainting [1,17], video inpainting [18], hyperspectral data recovery [22,23,41,45], magnetic

resonance imaging (MRI) data recovery [38], high-order web link analysis [16], personalized web search [31], and seismic data

reconstruction [19]. In this study, we specially focus on the reconstruction of low-rank tensors with randomly missing data.

Matrix completion can be regarded as the 2-mode tensor completion [4]. One powerful tool for matrix completion is to

minimize the matrix rank, which can effectively estimate the missing data exploiting both the local and global information [24].

The model for low-rank matrix completion is formulated as:

min
Y

rank(Y)

s.t. P�(Y) = F,
(1)

where Y ∈ R
m×n is the underlying matrix, F ∈ R

m×n is the observed matrix, and P�( · ) is the projection operator: see details in

Section 2. However, the main difficulty of solving (1) arises from the non-convexity of the rank of matrices, which may prevent

one from getting a global solution [40]. To solve the challenging problem of rank minimizing, Fazel et al. [8] and Kurucz et al. [20]

proposed to use rank constraint to iteratively estimate the missing values. Another popular and effective approach is to use the

trace norm, which is theoretical soundness and can be considered as the approximation for the rank of matrices [3,26,28]. And
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under certain conditions [4,5], the problem (1) is converted to the following convex optimization problem:

min
Y

‖Y‖∗

s.t. P�(Y) = F.
(2)

Then the model (2) can be efficiently solved by using some optimization algorithms, such as FPCA [26], APGL [37], LMaFit [40],

and the alternating direction method (ADM) [30,43].

For tensor completion, the low-rank based methods have also been widely studied [9,24,25,42,44]. The low-rank tensor com-

pletion model can be formulated as:

min
Y

rank(Y)

s.t. P�(Y) = F,
(3)

where Y ∈ R
I1×···×IN is the underlyingtensor, and F is the observed data. However, there is no unique definition for the rank of

tensors, such as CP-rank and n-rank [15], and both of the corresponding minimization problems are NP-hard [12]. As the tensor

is a generalization of the matrix, one can generalize matrix completion problem (2) to the tensor case:

min
Y

‖Y‖∗

s.t. P�(Y) = F .
(4)

A naive method is to unfold the tensor into a matrix, and thus to solve the matrix completion (2). However, the method only

utilizes low-rankness to one mode of the tensor, and it cannot recover the tensor well [24,42]. Thus, it is necessary to develop

methods considering low-rankness to the all mode of the tensor. Recently, Liu et al. [24] developed a theoretical framework for

low-rank tensor completion and established a definition of the trace norm for tensors as a surrogate for the tensor rank:

‖Y‖∗ :=
N∑

n=1

αn‖Y(n)‖∗, (5)

where Y(n) is the mode-n unfolding of Y: see details in Section 2. Then low-rank tensor completion problem (4) is rewritten as:

min
Y

∑N
n=1 αi‖Y(n)‖∗

s.t. P�(Y) = F .
(6)

Problem (6) can be solved by some optimization methods, such as FaLRTC [24] and the Douglas–Rachford splitting method [9].

Because the information of the all mode is considered, these methods [9,24] outperform the naive method. However they have

to calculate singular value decomposition (SVD) for N matrices, which is expensive in term of time and memory. Considering this

difficulty, Xu et al. [42] applied low-rank matrix factorization to the all-mode matricizations of the tensor as an alternative of the

tensor trace norm,

min
Y,X,A

N∑
n=1

αn

2
‖Y(n) − AnXn‖2

F

s.t. P�(Y) = F,

(7)

where A = (A1, . . . , AN), X = (X1, . . . , XN), and αn, n = 1, . . . , N are positive weights satisfying
∑N

n=1 αn = 1. Their method (called

TMac) has shown to obtain better results and take less time than FaLRTC [24].

Note that Xu et al. [42] only consider the low-rank prior. However, many real-world data exhibit the piecewise smooth prior.

In particular, as one of characterizing piecewise smooth functions, the total variation (TV) norm [29] has been shown to preserve

edges well in image restoration [11,21,46]. Recently, other TV based regularization methods have received great success in im-

age processing problems, such as the image segmentation [7,39], the reconstruction for video [6], hyperspectral image [22,45]

and MRI [38]. Particularly, the authors in [22,45] considered to apply TV regularization to material identification and unmixing

for hyperspectral images, with the aim of exploiting the spatial contextual information presented in the hyperspectral images.

Inspired by the former works, we consider to introduce the TV regularization into the tensor completion problem (7).

The contributions of this paper are mainly two folds. First, we propose a new model for low-rank tensor completion with

randomly missing data. More precisely, our model is:

min
Y,X,A

N∑
n=1

αn

2
‖Y(n) − AnXn‖2

F + μTV(X3)

s.t. P�(Y) = F,

(8)

where μ is the regularization parameter, A = (A1, . . . , AN), X = (X1, . . . , XN), and TV(X3) is the total variation of X3. Similar to

[2,45], An represents a library (each column contains a signature of the nth mode direction), and Xn is called an encoding. For

example, in the unmixing problem for hyperspectral image [2,45], each column of A3 contains a spectral signature, and each row

of X contains the fractional abundances of a given endmember. This interpretation is also valid for the mode-3 unfolding of video
3
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Fig. 1. The comparison results of TMac and the proposed method on synthetic data. Top row: original data. The data has 50 frames. In the first 40 frames, there

is a white square moving towards lower right corner every five frames, and in the last 10 frames, there are the backgrounds (its intensity is 0.5). Second row: the

marked data, which contains 80% missing entries, shown as black pixels. Bottom two rows: the recovered results by TMac and our method.
and MRI. For the other details of the model, we ask for the readers patience until Section 2. Our motivation is also illustrated

by Fig. 1, where we show the results recovered by TMac and our method for synthetic data. It is clear from Fig. 1 that the

recovered results by our method are visually better than that by TMac. Second, we propose an effective and convergent algorithm

to efficiently solve the proposed model. The proposed algorithm is based on block coordinate descent (BCD) method [27], and

used a proximal technique to ensure the strict convexity of each subproblem, so that the stability and robustness is improved. In

addition, we show that the sequence generated by our proposed algorithm converges to the coordinatewise minimizers. At last,

numerical examples are given to demonstrate the high effectiveness and robustness of the proposed algorithm.

The outline of this paper is as follows. In Section 2, the formulation of the proposed model is given and the BCD-based solver

is elaborated. In Section 3, experimental results are reported. Finally, conclusions are given in Section 4.

2. Problem formulation and numerical scheme

2.1. Preliminary

Following [15], we use low-case letters for vectors, e.g., a, upper-case letters for matrices, e.g., A, and calligraphic letters for

tensors, e.g., A. An N-mode tensor is defined as Y ∈ R
I1×···×IN , and yi1,...,iN

is its (i1, . . . , iN)-th component. The inner product of

two tensors X and Y is defined as 〈X ,Y〉 := ∑
i1,i2,...,iN

xi1,...,iN
yi1,...,iN

. The Frobenius norm is then defined as ‖X‖F :=
√〈X ,X 〉.

The mode-n unfolding of a tensor Y is denoted as Y(n) ∈ R
In×�i�=nIi , where the element (i1, i2, . . . , iN) maps to the matrix element

(in, j) satisfying

j = 1 +
N∑

k=1,k �=n

(ik − 1)Jk with Jk =
k−1∏

m=1,m �=n

Im. (9)

The inverse operator of unfolding is denoted as “fold”, i.e., Y = foldn(Y(n)). In our work, we adopt the n-rank definition for the

tensor Y, which is defined as an array: n-rank(Y) = (rank(Y(1)), . . . , rank(Y(N))). The tensor Y is low-rank, if Y(n) is low-rank for

all n. Please refer to [15] for a more extensive overview. Let � be an index set, then P�(Y) denotes the tensor coping the entries

from Y in the set and letting the remaining entries be zeros, i.e.,

(P�(Y))i1,...,iN
=

{
yi1,...,iN

, (i1, . . . , iN) ∈ �,

0, otherwise.

Next, we give a brief introduction of the proximal operator. Given a convex function f(x), the proximal operator of f(x) is

defined as follows:

prox f (y) = argmin
x

f (x) + ρ

2
‖x − y‖2, (10)
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where ρ is a positive constant. Friendly, the problem min
x

{ f (x)} is equivalent to min
x,y

{ f (x) + ρ
2 ‖x − y‖2}. Thus one can obtain the

minimization of {f(x)} by iteratively solving proxf(x
k), where xk is the last update of x. The proximal operator is very attractive in

that the objective function of (10) is strongly convex with respect to x so long as f(x) is convex.

2.2. Proposed model

The objective function of our model (8) is as following:

f (X, A,Y) =
N∑

n=1

αn

2
‖Y(n) − AnXn‖2

F + μTV(X3).

Suppose the rank of Y(n) is rn (n = 1, 2, . . . , N), which is given as a prior, thus, An ∈ R
In×rn and Xn ∈ R

rn×sn , where sn = ∏
i �=n Ii.

We define two sets T1 and T2 by Cartesian product: T1 := R
r1×s1 × · · · × R

rN×sN and T2 := R
I1×r1 × · · · × R

IN×rN , thus X ∈ T1 and

A ∈ T2.

We first explain the reason why we adopt the TV regularization of X3. The TV regularization measures the difference between

a pixel and its neighbors. The smaller the difference is, the better the TV regularization plays. Because the data is piecewise

smooth with respect to the 1st- and 2nd-mode direction, the difference between the pixel of Xn and its 1st- and 2nd-mode

direction neighbors is small. Thus, we can introduce the TV regularization of Xn at the 1st- and 2nd-mode direction into the

tensor completion problem. However, we find that X1 and X2 do not contain the complete information of the 1st- and 2nd-

mode for Y, because the rank of Y(1) is r1 (r1 < I1), that is, the dimension of the corresponding tensor is r1 × I2 × · · · × IN . Thus,

we introduce the TV regularization of Xn0
, n0 ∈ {3, 4, . . . , N}. Without loss of generality, we adopt the TV regularization of X3.

According to the rules of unfolding a tensor (9), we find that X3 has a good structure:

X3 =

⎡
⎢⎢⎢⎢⎣

X(1,1)
3

X(1,2)
3

· · · X(1,ŝ)
3

X(2,1)
3

X(2,2)
3

· · · X(2,ŝ)
3

...
...

. . .
...

X(r3,1)
3

X(r3,2)
3

· · · X(r3,ŝ)
3

⎤
⎥⎥⎥⎥⎦ ∈ R

r3×s3 , (11)

where ŝ = ∏N
i=4 Ii and X

(i,k)
3

∈ R
1×I1I2 is a vector by lexicographical ordering of the entries of the matrix X ( :, :, k, i4, . . . , iN) ∈

R
I1×I2 with i = 1 + ∑N

p=4 (ip − 1)Jp and Jp = ∏p−1
m=4

Im, which is a slice of the tensor X = fold3(X3) ∈ R
I1×I2×r3×I4×···×IN .

In dealing with tensor completion, the isotropic TV1 is defined as follows:

TVi(X3) :=
ŝ∑

k=1

r3∑
i=1

I1I2∑
j=1

√
|D̃ j,1X(i,k)

3
|2 + |D̃ j,2X(i,k)

3
|2, (12)

where X
(i,k)
3

refers to the kth block of ith row of X3, D̃ j,1X
(i,k)
3

and D̃ j,2X
(i,k)
3

are the gradient values of X
(i,k)
3

at the 1st- and 2nd-

mode directions of the jth pixel in X
(i,k)
3

, and D̃ j,1 and D̃ j,2 are the corresponding discrete gradient operators at the 1st- and

2nd-mode directions, respectively. Particularly, for a 3-mode tensor (ŝ = 1), X3 can be rewritten as:

X3 =
[
(X(1)

3
)T , (X(2)

3
)T , . . . , (X(r3)

3
)T

]T

, (13)

thus the TV(X3) degenerates to the same measure as [45]:

TVi(X3) :=
r3∑

i=1

I1I2∑
j=1

√
|D̃ j,1X(i)

3
|2 + |D̃ j,2X(i)

3
|2. (14)

2.3. Proposed algorithm

We present the numerical scheme for solving the problem (8). It is easy to see that the objective function of (8) is not jointly

convex for (X, A,Y), but is convex with respect to X, A, Y independently. Let T3 := T1 × T2 × R
I1×···×IN , thus Z = (X, A,Y) ∈ T3.

In order to solve the non-convex problem effectively, we introduce the proximal operator and adopt the BCD method.

Utilizing the proximal operator, we perform the update as

h(Z,Zk) = f (Z) + ρ

2
‖Z − Zk‖2

F , (15)
1 The anisotropic TV is defined as: TVa(X3) := ∑ŝ
k=1

∑r3

i=1

∑I1 I2
j=1

|D̃ j,1X(i,k)
3

| + |D̃ j,2X(i,k)
3

|. We mainly talk about the isotropic TV in our work, and the anisotropic

case is similar.
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where ρ > 0 is the proximal parameter, Z = (X, A,Y) and Zk = (Xk, Ak,Yk). Note that the problem (15) can be rewritten as

follows:

Xk+1 = argmin
X

{
h1(X,Zk

1) = f (X, Ak,Yk) + ρ

2
‖X − Xk‖2

F

}
,

Ak+1 = argmin
A

{
h2(A,Zk

2) = f (Xk+1, A,Yk) + ρ

2
‖A − Ak‖2

F

}
,

Yk+1 = argmin
Y

{
h3(Y,Zk

3) = f (Xk+1, Ak+1,Y) + ρ

2
‖Y − Yk‖2

F

}
, (16)

where Zk
1

= (Xk, Ak,Yk), Zk
2

= (Xk+1, Ak,Yk), Zk
3

= (Xk+1, Ak+1,Yk). Note that the X- and A- sub-problems can be solved paral-

lelly, because they can be decomposed into N independent problems. Then the updates (16) can be written explicitly as:

Xk+1
n =

{
((Ak

n)
T Ak

n + ρI1)†((Ak
n)

TY k
(n)

+ ρXk
n ), n = 1, 2, 4, . . . , N,

argmin
X3

1
2
‖Y k

(3)
− Ak

3X3‖2
F + μTV(X3) + ρ

2
‖X3 − Xk

3‖2
F , n = 3,

Ak+1
n = (Y k

(n)(Xk+1
n )T + ρAk

n)(Xk+1
n (Xk+1

n )T + ρI2)
†, n = 1, 2, 3, 4, . . . , N,

Yk+1 = P�c

(
N∑

n=1

αnfoldn

(
Ak+1

n Xk+1
n + ρY k

(n)

1 + ρ

))
+ F, (17)

where F is the observed data. It can be seen that all the subproblems except for the X3 subproblem can be easily solved. The

complexity of computing Y is O(r1I1s1 + · · · + rNINsN), the cost of computing An is O(Inr2
n + Inrnsn + r2

nsn) operations for n =
1, 2, . . . , N, and the cost of computing Xn is O(Inr2

n + Inrnsn + r2
nsn) operations for n = 1, 2, 4, . . . , N.

Following, we solve X3 subproblem using ADM [30,43,45]. Let

g(X3) = argmin
X3

1

2
‖Y k

(3) − Ak
3X3‖2

F + ρ

2
‖X3 − Xk

3‖2
F + μTV(X3).

In order to get the close form solution of g(X3), we solve its following equivalent problem:

ĝ(X̂3) = argmin
X̂3

1

2
‖Ŷ k

(3) − X̂3Âk
3‖2

F + ρ

2
‖X̂3 − X̂k

3‖2
F + μTV(X̂3),

where X̂ denotes the transpose of X. Then apply ADM for ĝ(X̂3) and rewrite the problem as follows:

min
X̂3,W

μ
s3∑

i=1

r3∑
j=1

∥∥Wi, j

∥∥
2

+ 1
2
‖Ŷ k

(3)
− X̂3Âk

3‖2
F + ρ

2
‖X̂3 − X̂k

3‖2
F

s.t. W1 = D1X̂3, W2 = D2X̂3,

(18)

where Wi, j = [(W1)i, j, (W2)i, j] ∈ R
1×2 with (W1)i, j and (W2)i, j are the (i, j)th entries of W1 and W2, respectively. Moreover,

Di :=

⎡
⎢⎢⎢⎢⎣

D̃i

D̃i

. . .

D̃i

⎤
⎥⎥⎥⎥⎦,

where, i = 1, 2, and D̃1 and D̃2 denote the assembled first-order difference matrices in the 1st- and 2nd-mode directions based

on D̃ j,1 and D̃ j,2, respectively, in (12).

Now, we use ADM to solve the problem. For simplicity, let

ĝ1(X̂3) = 1

2
‖Ŷ k

(3) − X̂3Âk
3‖2

F + ρ

2
‖X̂3 − X̂k

3‖2
F ,

and

ĝ2([W1 W2]) = μ
s3∑

i=1

r3∑
j=1

∥∥Wi, j

∥∥
2
.

The constraints are rewritten as follows:

BX̂3 + CW :=
[

D1

D2

]
X̂3 − I2s3×2s3

[
W1

W2

]
= 02s3×r3

,

where Ii × i is the i-by-i identity matrix. Then we can solve the problem (18) in two decoupled subproblems, which the conver-

gence can be guaranteed [10].
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The augmented Lagrangian function of (18) is

L(X̂3,W,�) = ĝ1(X̂3) + ĝ2(W) + 〈�, BX̂3 + CW〉 + β

2

∥∥BX̂3 + CW
∥∥2

F
, (19)

where � = (�1,�2)
T , and β > 0 is the penalty parameter. Then, the problem (19) is updated through alternating direction as:⎧⎪⎨

⎪⎩
X3-subproblem: X̂k+1,p+1

3
∈ argminL(X̂3,W p,�p),

W-subproblem: W p+1 ∈ argminL(X̂k+1,p+1
3

,W,�p),

�-subproblem: �p+1 = �p + β(BX̂k+1,p+1
3

+ CW p+1),

(20)

where p is the iteration indicator for solving the problem (18).

For the X3-subproblem, we solve the following problem:

X̂k+1,p+1
3

∈ argmin

{
1

2
‖Ŷ k

(3) − X̂3Âk
3‖2

F + ρ

2
‖X̂3 − X̂k

3‖2
F

+ 〈�p, BX̂3 + CW p〉 + β

2

∥∥BX̂3 + CW p
∥∥2

F

}
, (21)

then X̂
k+1,p+1
3

can be solved through the classical Sylvester matrix equation

X̂3(Âk
3(Âk

3)
T ) + βBT BX̂3 + ρX̂3 = ρX̂k

3 + Ŷ (k)
(3)

(Âk
3)

T − BT �p − βBTCW p. (22)

The (22) can be reformulated as the following form using the Kronecker product notations:

(Âk
3(Âk

3)
T ⊗ I + βI ⊗ BT B + ρ1I ⊗ I)vec(X̂3)

= vec(ρX̂k
3 + Ŷ k

(3)(Âk
3)

T − BT �p − βBTCW p), (23)

where vex(·) refers to a vector by lexicographical ordering of the entries in a matrix. Using singular value decomposition of Âk
3

and the Fourier decomposition of BTB with periodic boundary condition,

Âk
3 = U�V ∗, BT B = F ∗	2F, (24)

we can solve the problem (23) efficiently. The cost of computing the singular value decomposition of A3 is O(r2
3 I3), and the cost

of computing Fourier decompositions of BTB is O(s2
3

log s3). Then, (23) can be rewritten as:

(U ⊗ F ∗)(�2 ⊗ I + βI ⊗ 	2 + ρI ⊗ I)(U∗ ⊗ F)vec(X̂3)

= vec(ρX̂k
3 + Ŷ k

(3)(Âk
3)

T − BT �p − βBTCW p), (25)

the solution vec(X̂3) is explicitly expressed as:

vec(X̂3) = (U ⊗ F ∗)(�2 ⊗ I + βI ⊗ 	2 + ρI ⊗ I)−1(U∗ ⊗ F)

· vec(ρX̂k
3 + Ŷ k

(3)(Âk
3)

T − BT �p − βBTCW p). (26)

At each iteration, the cost of computing vec(ρX̂k
3

+ Ŷ k
(3)

(Âk
3
)T − BT �p − βBTCW p) is O(s3r3) operations, and the cost of computing

the product of matrix (U⊗F∗) (or (U∗⊗F)) with an r3s3-vector is O(s3r2
3 + s3r3 log s3). Therefore, the complexity of obtaining

vec(X̂3) is O(2s3r2
3

+ s3r3 log s3) at each iteration.

For the W-subproblem, we solve the following problem:

W p+1 = argminμ
s3∑

i=1

r3∑
j=1

∥∥Wi, j

∥∥
2

+ β

2

∥∥∥∥BX̂k+1,p+1
3

+ CW + �p

β

∥∥∥∥
2

F

, (27)

which, can be determined independently by solving s3r3 two-variable minimization problems:

minμ
√|(W1)i, j|2 + |(W2)i, j|2 + β

2
[(W1)i, j − (D1X̂k+1,p+1

3
)i, j − 1

β
(�p

1
)i, j]

2

+ β

2
[(W2)i, j − (D2X̂k+1,p+1

3
)i, j − 1

β
(�p

2
)i, j]

2. (28)

And (28) can be solved by using the well-known 2-D shrinkage formula as follows:

[(W1)i, j, (W2)i, j] = max{‖Si, j‖2 − μ

β
, 0} Si, j

‖Si, j‖2

, 1 ≤ i ≤ s3, 1 ≤ j ≤ r3, (29)

where, Si, j = [(D1X̂
k+1,p+1
3

)i, j + 1
β
(�p

1
)i, j, (D2X̂

k+1,p+1
3

)i, j + 1
β
(�p

2
)i, j] for 1 ≤ i ≤ s3, 1 ≤ j ≤ r3, and we assign 0 · (0/0) = 0. The

cost of computing [W , W ] is O(s r ).
1 2 3 3
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At each iteration, the cost of computing all the variables An, Xn, and Y(n) is O(I3r2
3 + 2I3r3s3 + 3r2

3s3 + r3s3 log s3 +∑
n �=3 (2Inr2

n + 3Inrnsn + 2r2
nsn)).

In the following, we study the convergence of the proposed algorithm. Recently, Razaviyayn et al. [27] proposed the block

successive upper-bound minimization (BSUM) for non-smooth optimization problem. It is an alternative block coordinate decent

method. Following, we restated the convergence result in [27] for convenience.

Lemma 1. Given the problem min f (x) s.t. x ∈ X , where X is the feasible set. Assume u(x, xk−1) is an approximation of f(x) at the

k − 1-th iteration, which satisfied the following conditions:

ui(yi, y) = f (y), ∀y ∈ X ,∀i,

ui(xi, y) ≥ f (y1, . . . , yi−1, xi, yi+1, . . . , yn), ∀xi ∈ Xi,∀y ∈ X ,∀i,

u
′
i(xi, y; di) |xi=yi

= f
′
(y; d), ∀d = (0, . . . , di, . . . , 0) s.t. yi + di ∈ Xi, ∀i,

ui(xi, y) is continuous in (xi, y), ∀i, (30)

where ui(xi, y) is the sub-problem with respect to the ith block and f
′
(y; d) is the direction derivative of f at the point y in direction d.

Suppose ui(xi, y) is quasi-convex in xi for i = 1, . . . , n. Furthermore, assume that each sub-problem argminui(xi, xk−1), s.t. x ∈ Xi has

a unique solution for any point xk−1 ∈ X . Then, the iterates generated by the BSUM algorithm converge to the set of coordinatewise

minimum of f.

Next we will show that the convergence of the proposed algorithm for the model (8) is guaranteed, as it fits the framework of

the BSUM method.

Theorem 1. The iterates generated by (15) converge to the set of coordinatewise minimizers.

Proof. It is easy to verify that h(Z,Zk) is an approximation and a global upper bound of f (Z) at the kth iteration, which

satisfies the following conditions:

hi(Zi,Z) = f (Z), ∀Z, i = 1, 2, 3,

hi(Z̄i,Z) ≥ f (Z1, . . . , Z̄i, . . . ,Z3), ∀Z̄i,∀Z, i = 1, 2, 3,

h
′
1(Z̄1,Z;D1) |Z̄1=Z1

= f
′
(Z;D1), ∀D1 = (D1, 0, 0),

h
′
2(Z̄2,Z;D2) |Z̄2=Z2

= f
′
(Z;D2), ∀D2 = (0,D2, 0),

h
′
3(Z̄3,Z;D3) |Z̄3=Z3

= f
′
(Z;D3), ∀D3 = (0, 0,D3),

hi(Z̄i,Z) is continuous in (Z̄i,Z) i = 1, 2, 3, (31)

where Z = (X, A,Y), and Zi equal X, A,Y for i = 1, 2, 3, respectively. In addition, the sub-problem hi, (i = 1, 2, 3) is strictly convex

with respect to X, A, and Y respectively and thus each sub-problem has a unique solution. Therefore, all assumptions in Lemma

1 are satisfied. �

3. Numerical experiments

In this section, we test the performance of the proposed model for the tensor completion. The quality of the estimated tensor

is measured by the peak signal-to-noise ratio (PSNR) and the relative squared error (RSE), which are defined by

PSNR = 10 log10

Ȳ2
true

1
n2 ‖Y − Ytrue‖2

F

,

and

RSE = ‖Y − Ytrue‖F

‖Ytrue‖F

,

where Ytrue, Ȳtrue, and Y are the original tensor, the maximum pixel value of the original tensor, and the estimated tensor,

respectively. We adopt the relative change of the two successive estimated tensors (RelCha), i.e.,

‖Yk+1 − Yk‖F

‖Yk‖F

< tol,

as the stopping criterion for TMac2 [42] and the proposed method. Here, the tolerance is set to be 10−5 for the synthetic data

and be 10−4 for the real data. All the parameters in our method can be fixed, i.e., the weights αn = 1/N, the regularization

parameter μ = 1, the penalty parameter β = 10, and the proximal parameter ρ = 0.1 in the all examples. In all the experiments,

the masked data are obtained by randomly removing some entries. All the tests are performed under Windows 7 and Matlab

Version 8.2.0.701 (R2013b) running on a desktop with an Inter(R) Core(TM) i3-4160 CPU at 3.60 GHz and 4GB of memory.
2 In [42] the authors adjust the rank along with iterations, but we do not use the the rank-adjusting for fairness in the research.
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Table 1

PSNR and RSE comparison of the results recovered by FaLRTC [24], TMac [42] and the proposed method for different

sampling rates.

SR FaLRTC TMac The proposed method

Whole Average Worst Whole Average Worst Whole Average Worst

PSNR 10% 24.10 25.19 22.56 16.24 20.51 9.56 22.45 28.95 17.71

30% 29.25 31.06 26.03 38.71 54.16 34.21 43.88 56.29 40.82

50% 34.55 36.42 29.97 44.19 96.50 34.19 50.20 66.08 40.41

RSE 10% 122 116 145 301 257 647 147 127 253

30% 67.4 62.4 97.1 24.4 19.2 45.4 13.9 10.8 24.3

(10−3) 50% 36.6 33.7 61.7 12.1 3.89 38.0 6.04 3.01 18.6
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Fig. 2. The convergence behaviors of the proposed algorithm with respect to the PSNR value, the RSE value, and the RelCha value.
3.1. Synthetic data

In this subsection, we evaluate the proposed model on synthetic data. The size of the test data is 50 × 50 × 50. The n-rank

of the test data is (17,17,9). We study the influence of different sampling rates (SR), i.e., SR = 10%, SR = 30%, and SR = 50% for

FaLRTC, TMac and the proposed method, and the results are summarized in Table 1, where the words “Whole”, “Average”, and

“Worst” denote the PSNR values and RSE values of tensor as a whole, the average of the PSNR values and RSE values of the all

frames, and the worst PSNR values and RSE values, respectively. From this table, one can observe: (1) the larger the sampling

rate, the better the results recovered by both the methods; (2) for both low and high sampling rates, our results are better than

the TMac results; (3) the worst frame recovered by the proposed method are better than that by TMac;(4) for SR = 10%, the result

recovered by FaLRTC is better than our result. However, the average of the PSNR values and RSE values of the all recovered frames

by our method is better than that by FaLRTC.

The convergence behaviors of the PSNR value, the RSE value, and the RelCha value are displayed in Fig. 2. We observe that the

RelCha values of both the methods decrease almost at the same speed in the early iterations, and after some iterations, the RelCha

values of our method decrease faster than TMac. In addition, the TMac exhibits the semi-convergence behavior with respect to

the PSNR value and the RSE value, i.e., in the early iterations the PSNR value begins to increase and after some “optimal” iterations

the PSNR value then begins to decrease, and the RSE value behaves the opposite. In contrast, the PSNR value is still increasing

and the RSE value is still decreasing in the latter iterations for the proposed model, and then they keep about the same finally. In

other words, our method is more stable.

3.2. Real data

3.2.1. Video

In this section, we compare the performance of FaLRTC, TMac and the proposed method on videos. We test two videos, named

as “suzie” and “coastguard”.3 Both the two videos are color with the YUV format. We used Y channel in our tests. We used the

first 150 frames of both “suize” and “coastguard”, thus both test tensors are of size 144 × 176 × 150. The numbers of the largest

0.5% singular values are used to approximate the rank of each mode. In Fig. 3, we illustrate the recovered results of two frames

of “suzie” and “coastguard” by FaLRTC, TMac and the proposed method. From Fig. 3, we note that the proposed method obtain

higher quality results for both 50% and 20% sampling rates. The PSNR values and the RSE values against the frame number are

plotted in Fig. 4. We see that the proposed method performs quite well in terms of PSNR values and RSE values for almost frames

with low and high sampling rates.
3 The videos can be downloaded from http://trace.eas.asu.edu/yuv/.
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Original 50% Masked FaLRTC TMac The Proposed Method

Original 50% Masked FaLRTC TMac The Proposed Method

Original 80% Masked FaLRTC TMac The Proposed Method

Original 80% Masked FaLRTC TMac The Proposed Method

Fig. 3. From left to right: the original video, the masked video, and the estimated results by FaLRTC, TMac and the proposed method. The first two rows are for

“coastguard”, which has 50% pixels missing. The last two rows are for “suzie”, which has 80% pixels missing.
3.2.2. MRI

In this section, we test the performance of FaLRTC, TMac and the proposed method on MRI data. We use the cubical MRI

data4, which is a 3-mode tensor of size 181 × 217 × 181. The numbers of the largest 0.5% singular values are used to approximate

the rank of each mode. The MRI data is tridimensional, so we display the results in three different views illustrated in Fig. 5. We

randomly remove 80% elements of the test data. Fig. 6 shows the recovered results observed from different directions. Clearly,

the restored results obtained by the proposed method are visually better than those obtained by FaLRTC and TMac. Fig. 7 shows

the PSNR values of every frame recovered by TMac and the proposed method for three directions. We note that every frame

recovered by the proposed method is better than that recovered by TMac.

3.2.3. Hyperspectral image

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Cuprite data5 is considered in our real data experiment. The

hyperspectral data used in experiments correspond to a 15 × 150 pixels subset with 188 spectral bands; see [45], [13] and [14]

for more details. The numbers of the largest 0.5% singular values are used to approximate the rank of each mode. In Fig. 8, we

display the recovered results by FaLRTC, TMac and the proposed method. It is clear from the figure that the estimated results by

the proposed method are visually better than those by FaLRTC and TMac. The PSNR values and the RSE values of each frame are

showed in Fig. 9. We see that the proposed method performs better in terms of the PSNR values and the RSE values of each frame

as compared with TMac.

3.3. Robustness

In this section, we test the robustness of the proposed method with respect to the different initial guesses and different

parameters. The sampling rate of this section is set to be 30%.
4 http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal.html
5 http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
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Fig. 4. The PSNR values and the RSE values recovered by TMac [42] and the proposed method for every frame. The first row is for “coastguard” and the second

row is for “suzie”.

Fig. 5. The description of three directions for MRI data.
First, we study the influence of the different guesses of X0 and A0. We test three cases: the zero matrix, the Gaussian random

matrix, and the all-ones matrix, which are denoted by “zeros”, “random”, and “ones”, respectively. First of all, we have to clarify

that it is meaningless that both the A0 and X0 are set to be zero matrices. In this case, Y(n) in (7) and (8) equals to zero matrix

for all n, namely, the solution of (7) and (8) is the marked data F . We display the PSNR values, the RSE values, and the iteration

number for different guesses of X0 and A0 in Table 2. From the table, we can see that the proposed method can estimate the

missing data from the masked data successfully for different guesses of X0 and A0. However, TMac fails when A0 is set to be zero

matrix. For the results recovered by the proposed method, the difference between the best RSE value and the worst RSE value is
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Fig. 6. The recovered results for three directions. From left to right: the original data, the masked data, and the recovered results by FaLRTC, TMac and the

proposed method. From top to bottom: the results for the front direction, the side direction and the above direction, respectively.
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Fig. 7. The PSNR values recovered by TMac [42] and the proposed method for every frame. From left to right: the PSNR values for the front direction, the side

direction, and the above direction, respectively.

Table 2

The results recovered by TMac and the proposed method with different initial guesses.

X0 A0 TMac The proposed method

PSNR RSE (10−3) Iter PSNR RSE (10−3) Iter

Zeros ∗ ∗ ∗ ∗ ∗ ∗
Zeros Random 40.49 18.5 161 45.40 10.5 325

Ones 26.18 96.0 32 46.04 9.75 219

Zeros ∗ ∗ ∗ 41.56 16.3 1542

Random Random 40.93 17.6 170 45.30 10.6 299

Ones 26.18 96.0 32 40.68 18.1 1642

Zeros ∗ ∗ ∗ 46.01 9.79 214

Ones Random 42.24 15.1 170 45.56 10.3 303

Ones 26.18 96.0 32 46.07 9.72 217
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Fig. 8. The results recovered by FaLRTC, TMac and the proposed method. Each row represents a example of the recovered frames. From left to right: the original

data, the masked data, the recovered results by FaLRTC, TMac and the proposed method.

20 40 60 80 100 120 140 160 180
15

20

25

30

35

40

45

Frame number

P
S

N
R

TMac
Average of TMac
Our Method
Average of Our Method

20 40 60 80 100 120 140 160 180
10

−2

10
−1

10
0

Frame number

R
S

E

TMac
Average of TMac
Our Method
Average of Our Method

Fig. 9. The PSNR values and the RSE values recovered by TMac [42] and the proposed method for every frame.
8.40 × 10−3, and for the results recovered by TMac, the difference is 8.09 × 10−2. Thus, we conclude that the proposed method

is more robust against the different initial guesses.

Second, we study the influence of the estimation for R. Here, R = (17, 17, 9) denotes the n-rank of the synthetic data. We set

the estimation to be R + i, where i = −8,−6, . . . , 32. The PSNR value and the RSE value with respect to the estimated rank are

plotted in Fig. 10. We observe that the PSNR value and the RSE value of TMac change rapidly, when the estimated rank is far away

from the true one. In contrast, the change of the PSNR value and the RSE value is smaller. In other words, the proposed method

is more stable.

Finally, we study the effects of the proximal parameter ρ , regularization parameter μ and penalty parameter β . The PSNR

value and the RSE value with respect to iterations are displayed in Fig. 11 for different proximal parameters. The plot suggests that

the proposed method can reach the same PSNR value and the same RSE value for different proximal parameters. The proximal

parameter indeed affects the performance of the proposed method in terms of the iteration number. The PSNR value and the RSE

value with respect to iterations are displayed in Fig. 12 for different regularization parameters. The plot suggests that we should

select the regularization parameter carefully. And the regularization parameter also affects the performance of the method in

terms of the iteration number. The PSNR value and RSE value with respect to iterations are reported in Fig. 13 for different

penalty parameters. The convergence of the proposed method is theoretically guaranteed regardless of the penalty parameter as

long as it is a positive number. In practice, we observe that the numerical performances of the proposed method are affected by

the value of penalty parameter.
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Fig. 10. The PSNR and RSE comparison against the estimated rank on synthetic data. The n-rank of the synthetic data is R = (17, 17, 9) denoted as 0 in

X-coordinate. And i in X-coordinate denotes R + i, i = −8,−6, . . . , 32.
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Fig. 11. The RSE values and the PSNR values with respect to iterations for different proximal parameters ρ .
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Fig. 12. The RSE values and the PSNR values with respect to iterations for different regularization parameters μ.
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Fig. 13. The RSE values and the PSNR values with respect to iterations for different penalty parameters β .

Table 3

The restoration results for the proposed model with different iteration number for solving

X3.

Iteration number 3 6 9 12 15 18 21

PSNR 59.30 59.35 59.36 59.38 59.38 59.38 59.38

Time 4.90 5.26 5.87 6.16 6.28 6.36 6.64
On the other hand, we study the sensitivity of the number of iterations to be set for computing X3. By using the synthetic data

with 50% sampling rate, we report in Table 3 the PSNR values and the CPU-times for different numbers of iterations for computing

X3. It is obvious that when the number of iterations is higher, the PSNR value is slightly better, but the overall computational time

increases. According to the results, it is sufficient to set the number of iterations to be three for computing X3.

4. Conclusions

In this paper, we presented a model combining TV and low-rank matrix factorization to deal with tensor completion. An

efficient algorithm has been developed to solve the proposed model. We demonstrate that our numerical scheme converges

to the coordinatewise minimizers. Experimental results have shown that the proposed method is more effective and robust as

compared with TMac.
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