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a b s t r a c t 

Low-rankness has been widely exploited for the tensor completion problem. Recent ad- 

vances have suggested that the tensor nuclear norm often leads to a promising approxi- 

mation for the tensor rank. It treats the singular values equally to pursue the convexity of 

the objective function, while the singular values for the practical images have clear physi- 

cal meanings with different importance and should be treated differently. In this paper, we 

propose a non-convex logDet function as a smooth approximation for tensor rank instead 

of the convex tensor nuclear norm and introduce it into the low-rank tensor completion 

problem. An alternating direction method of multiplier (ADMM)-based method is devel- 

oped to solve the problem. Experimental results have shown that the proposed method 

can significantly outperform existing state-of-the-art nuclear norm-based methods for ten- 

sor completion. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In computer vision and image processing, there are many missing data estimation problems, such as image inpainting

[1–6] , video inpainting [7,8] , remote-sensing image reconstruction [9–11] , and scan completion [12] . Tensors are high-order

generalizations of vectors and matrices [13] , thus the above-mentioned problems can be formulated as the tensor com-

pletion problem. The missing data can be estimated by local and global approaches [14,15] . Local approaches are used to

estimate the missing entries based on the relationship between the adjacent entries, e.g., partial differential equations (PDEs)

[1,7] and belief propagation [3] . However, in practice the missing entries depend on the entries located at distinct regions.

The global property, also called the non-local self-similarity, has achieved significant success in tensor completion [14–19] . 

For matrix completion, one popular method is to minimize the matrix rank, which can effectively estimate the missing

data by exploiting both the local and global information. However, minimizing the matrix rank is a non-convex and NP-hard

problem that may prevent one from obtaining a global minimizer [20] . To tackle this difficulty, the nuclear norm of matrices

has been adopted to approximate the rank of matrices [21–25] . Under certain conditions [22–24] , the resulting convex

optimization problem is equivalent to the rank minimization problem. Beyond the nuclear norm, many other methods,

e.g. low-rank matrix factorization [20,26] , logDet function [27] , weighted nuclear norm minimization (WNNM) [28] , and

minimax concave penalty (MCP) function [29,30] , have been proposed to handle the matrix rank minimization problem.
∗ Corresponding authors. 
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These methods are all non-convex and work better than those based on the nuclear norm. Despite the theoretical soundness,

we conjecture that non-convex approximation for tensor rank could lead to better results, as has been observed in the

above-mentioned studies. This is one of the motivation for considering a non-convex function in this paper. 

The tensor is the multi-dimensional generalization of the matrix, but is more complex than the matrix. Many definitions

of tensors cannot be generalized from the corresponding definitions of matrices, such as the definition of the product be-

tween a tensor and another tensor or matrix, the definition of the rank for tensors, and other corresponding operators (e.g.,

singular value decomposition), etc. To take full advantage of the information in a multi-dimensional tensor, the correspond-

ing definitions for tensors have been defined, e.g., CANDECOMP/PARAFAC (CP) decomposition [31,32] , Tucker decomposition

[33–35] , tensor matrix product, and so on. Based on the CP and Tucker decompositions, two definitions for the tensor rank

named CP-rank and n -rank are used for the tensor completion problem. Both decomposition methods require a reliable

estimation of the underlying tensor rank. However, it is difficult to estimate the tensor rank accurately. 

In addition to CP and Tucker decompositions, there are many other approaches to study the tensor rank [14–18,36–38] .

One important technique for tensor completion is to take the unfolding matrices of the tensor into consideration. For

example, one can take the ranks of N unfolding matrices for an N th-order tensor into consideration [14–17,36] . In this case,

Liu et al. [14] established a novel definition of the tensor nuclear norm for the tensor n -rank. They proposed the alternating

direction method of multipliers (ADMM) to solve the resulting nuclear norm minimization problem. Gandy et al. [15] re-

cently proposed a noise reduction tensor completion model based on the tensor nuclear norm and two algorithms for the

problem. One is based on the Douglas–Rachford splitting technique and its dual variant, and the other is based on ADMM. 

The matrix nuclear norm-based problem is convex. It treats each singular value equally. However, for the practical image,

the singular values have clear physical meanings with different im portance and should be treated differently [28] . For in-

stance, the column (or row) vectors of a low-rank matrix often lie in a low-dimensional subspace; the larger singular values

are generally associated with the major projection orientations, and thus, they would be better if shrunk less to preserve

the major data components. Clearly, the nuclear norm-based methods fail to take advantage of such prior knowledge. The

definition of the tensor nuclear norm is the weight sum of the nuclear norm of N unfolding matrices. We can see that the

tensor nuclear norm does not consider the prior knowledge. This is the second motivation of this paper. 

To overcome the disadvantages of the tensor nuclear norm, the larger singular values should be shrunk less. One way is

to assign smaller weights to the larger singular values, as in WNNM [28] . However, this would introduce more parameters,

which may lead the method being less robust. In this paper, we use the logarithm of singular values to pursue the impor-

tance of the larger singular values. The logarithm operator can make a larger scalar decrease more rapidly than a smaller

one; the larger singular value is shrunk less using a smaller weight. In [27] , it has been shown that for a symmetric positive

semidefinite matrix, the logDet function, which is the sum of the logarithm of singular values, depicts the matrix rank more

accurately than the nuclear norm. It works well in many applications, such as matrix completion [39] , shadow removal [40] ,

optical flow estimation [41] , compressed sensing [42] , and image restoration [43,44] . To the best of the authors’ knowledge,

there is no similar function for tensors. Inspired by these observations, we propose a non-convex surrogate function for

tensor rank based on the logDet function instead of using the convex nuclear norm. The non-convex function is defined as

the weighted sum of the logDet for each mode unfolding of the tensor. The definition considers the global correlation for

each mode, which leads to better performance. Although the resulting problem is non-convex, which means it is difficult to

find a global minimizer, we introduce some auxiliary variables and design an ADMM-based method to efficiently solve the

proposed model. Extensive experiments are given to demonstrate the effectiveness of the proposed method. 

The outline of this paper is as follows. We first review the notations of tensors and related work in Section 2 . In Section 3 ,

we describe our motivation details, then we propose the non-convex approximation for tensor rank and establish the tensor

completion model based on this definition. In Section 4 , an ADMM-based method is proposed. In Section 5 , experimental

results are reported. Finally, some conclusions are given in Section 6 . 

2. Notations and related work 

2.1. Notations 

Following [13] , we use non-bold low-case letters for scalars, e.g., x , bold low-case letters for vectors, e.g., x , non-bold

upper-case letters for matrices, e.g., X , and bold upper-case letters for tensors, e.g., X . An N th-order tensor is defined as

X ∈ R 

I 1 ×···×I N , and x i 1 , ... ,i N is its (i 1 , . . . , i N ) th component. 

The inner product of two tensors X and Y is defined as 〈 X , Y 〉 := 

∑ 

i 1 ,i 2 ,...,i N 
x i 1 ,...,i N y i 1 ,...,i N . The Frobenius norm is then

defined as: 

‖ 

X ‖ F := 

√ 

〈 X , X 〉 . 
Fibers are the higher-order analogue of matrix rows and columns. A fiber is defined by fixing every index but one. Fig. 1

shows the mode- n fibers for a third-order tensor. The mode- n unfolding of a tensor X is denoted as X (n ) = unfold n (X ) ∈
R 

I n ×�i � = n I i , which is a matrix with columns being the mode- n fibers of X in the lexicographical order. The inverse operator

of unfolding is denoted as “fold”, i.e., X = fold n (X (n ) ) . The n -rank of an N th-order tensor X , denoted as rank n ( X ), is the rank

of X ( n ) , and the rank of X based on n -rank is defined as an array: rank (X ) = ( rank (X (1) ) , . . . , rank (X (N) )) . The tensor X is
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Fig. 1. Mode- n unfoldings of a third-order tensor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

low-rank, if X ( n ) is low-rank for all n . This definition relates to the Tucker decomposition [33] . Please refer to [13] for its

extensive overview. 

2.2. Related work 

In this section, we consider the problem estimating the missing entries using low-rank prior of the underlying tensor.

Given an observed tensor B whose entries in the index set � are known but the remaining are missing, find the tensor X

from the following optimization problem: 

min 

X 
rank (X ) 

s.t. X � = B �. (1) 

Recently, Liu et al. [14] developed the definition for the tensor nuclear norm as a surrogate for the tensor n -rank, and

they solved the following convex problem as a variant of (1) : 

min 

X 
‖ X ‖ ∗ := 

N ∑ 

n =1 

αn ‖ X (n ) ‖ ∗

s.t. X � = B �, (2) 

where αn are constants satisfying αn ≥ 0 and 

∑ N 
n =1 αn = 1 . One of the algorithms for solving the problem (2) in [14] is

based on ADMM called HaLRTC. Recently, Gandy et al. in [15] studied noisy tensor completion based on nuclear norm and

proposed a Douglas-Rachford splitting method. 

3. Proposed model 

In this section, we explain the motivation and propose the non-convex but smooth surrogate function for the tensor

n -rank by using the logDet function rather than the nuclear norm. We also establish the completion model based on this

definition. 

Our motivation for this model can be divided into three parts. (1) Although the non-convex functions are more

difficult, many works have paid more attention to them because of their effectiveness. The non-convex l p -norm (0 <

p < 1) [45,46] performs much better than the l 1 -norm in approximating the l 0 -norm; the low-rank matrix factorization

[16,20,26] and MCP function [18,29,30] also perform better than the convex nuclear norm. Therefore, we conjecture that a

non-convex approximation for the tensor rank could lead to better results. 

(2) The n -rank of a tensor denotes the correlation with respect to the corresponding dimension. A simple description for

a third-order tensor unfolding is shown in Fig. 1 . We can see that the rank of the mode- n unfolding matrix X ( n ) denotes the

linear correlation between the mode- n fibers. In [14] , the rank of X ( n ) is approximated by the nuclear norm of X ( n ) . Fortu-

nately, the nuclear norm is the tightest convex approximation, and the nuclear norm minimization problem can be easily

solved by the singular value thresholding (SVT) [21] , which is theoretically sound [47] . The nuclear norm-based methods

treat each singular value equally. However, the larger singular values are generally associated with the major information,

and hence they should better be shrunk less to preserve the major data information. Clearly, tensor nuclear norm-based

completion methods fail to preserve the major data components. (3) To preserve the major data components, the singular

values should be treated differently. One way is to use the weighted nuclear norm, but it has to introduce more parameters

that may lead the method to be less robust. The logarithm operator can make a larger scalar decrease more rapidly than a

smaller one, i.e., the larger singular values are shrunk less using a smaller weight. Given two positive scalars: one is smaller,

denoted as s , and the other is larger, denoted as l , log (q ) = W q ∗ q, where q ∈ { s, l }. We can see that the weight | W l | < | W s |,

because of l > s when l, s �∈ (1, e ) where e is the Euler’s number (The interval (1, e ) is narrower than the range of singular

values, thus we can ignore it). Therefore, the larger singular values are shrunk less, and can be treated as more important. In

addition, for scalars, the effective of the logDet can be seen in Fig. 2 , where we can see that the logDet function can better

approximate the rank than the nuclear norm. For vectors, the logDet function leads to the well-known reweighted l 1 -norm.

In [48] it was shown that the reweighted l 1 -norm achieved better performance than the l 1 -norm. For matrices, the logDet

function also performs better than the nuclear norm and often leads to superior image recovery results [41,42,49] . 
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Fig. 2. Comparison of rank, the nuclear norm and the logDet function for scalars. 

 

 

 

 

 

 

 

 

 

 

 

 

It has been shown in [27] that for a symmetric positive semidefinite matrix X ∈ R 

n ×n , there is a better surrogate, i.e., 

E(X, ε) := log det (X + εI) , (3)

where ε > 0 is a small constant. Note that the energy function E ( X , ε) is not convex. However, since it is smooth on the

positive definite cone, it can be minimized using a local minimization method [27] . 

In this paper, we propose the smooth surrogate of the tensor n -rank as follows: 

logDet (X , ε) := 

N ∑ 

n =1 

αn log det ((X (n ) X 

T 
(n ) ) 

1 / 2 + ε n I n ) , (4)

where ε = (ε 1 , . . . , ε N ) 
T , and αn are constants satisfying αn ≥ 0 and 

∑ N 
n =1 αn = 1 . In essence, the logDet function of a tensor

is a linear combination of the logDet function of all matrices unfolded along each mode. Note that when the mode number

N is equal to two, the definition of the logDet function (4) is consistent with (3) . 

Under this definition, we propose the following model for the tensor completion problem: 

min 

X 

N ∑ 

n =1 

αn L (X (n ) ) 

s.t. X � = B �, (5)

where L (X (n ) ) = log det ((X (n ) X 
T 
(n ) 

) 1 / 2 + ε n I n ) and B � denotes the tensor copying the entries from X in the index set � and

letting the remaining entries be zeros. For an arbitrarily matrix X (n ) ∈ R 

I n ×
∏ 

i � = n I i , that is neither square nor positive semidef-

inite, we consider the L ( X ( n ) ) function: 

L (X (n ) ) = log det ((X (n ) X 

T 
(n ) ) 

1 / 2 + ε n I n ) 

= log det (U n �
1 / 2 
n U 

−1 
n + ε n I n ) 

= log det (�1 / 2 
n + ε n I n ) 

= log 

I n ∏ 

i =1 

(σi (X (n ) ) + ε n ) 

= 

I n ∑ 

i =1 

log (σi (X (n ) ) + ε n ) , (6)

where X (n ) X 
T 
(n ) 

= U n �n U 

−1 
n , and �1 / 2 

n = diag { σ1 (X (n ) ) , . . . , σI n (X (n ) ) } is a diagonal matrix whose diagonal elements are the

singular values of X ( n ) . Although 

∑ I n 
i =1 

log (σi (X (n ) ) + ε n ) is non-convex, we can solve it efficiently using a local minimization

method. We can see from (6) that our proposed function shrinks the larger singular values less, so that the important

components are preserved. 
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4. Proposed algorithm 

In this section, we present the numerical scheme for solving (5) . First, use the following first-order Taylor expansion to

approximate L ( X ( n ) ) in (6) : 

L ω k (X (n ) ) ≈
I n ∑ 

i =1 

σi (X (n ) ) 

σ k 
i 
(X (n ) ) + ε n 

+ constant 

= (ω 

k ) T σ + constant , (7) 

where σ k 
i 
(X (n ) ) s are the solutions obtained in the k th iteration, σ = (σ1 (X (n ) ) , . . . , σI n (X (n ) )) 

T and ω 

k = (1 / (σ k 
1 
(X (n ) ) +

ε n ) , . . . , 1 / (σ k 
I n 
(X (n ) ) + ε n )) T . Combining (7) and the following notation 

X S (X ) = 

{
0 , if X ∈ S, 

∞ , otherwise , 

where 

S := { X ∈ T , X � = B �} , 
the problem (5) can be rewritten as the following unconstrained problem: 

min 

X 
X S (X ) + 

N ∑ 

n =1 

αn L ω k (X (n ) ) . (8) 

Thus, the problem (8) can be solved efficiently using ADMM [50–56] . 

Introducing some auxiliary values, the problem (8) can be rewritten as follows: 

min 

X , Y 1 , ... , Y N 
X S (X ) + 

N ∑ 

n =1 

αn L ω k (Y n, (n ) ) 

s.t. Y 1 = X , . . . , Y N = X . (9) 

For simplicity, we denote the space of the tensors by T := R 

I 1 ×···×I N , and let I T denote the identity operator on T . Define

the set K by the Cartesian product: K := T × · · · × T (N terms ) , thus Y := (Y 1 , . . . , Y N ) 
T ∈ K. Thus, the inner product and the

corresponding norm on the space K can be defined as 〈X , Y〉 := 

∑ N 
i =1 〈 X i , Y i 〉 and ‖X ‖ K := 

√ ∑ N 
i =1 〈 X i , X i 〉 = 

√ ∑ N 
i =1 ‖ X i ‖ 2 F 

.

Then, we can define the functions f : K → R and g : T → R as 

f (Y) := 

N ∑ 

n =1 

f n (Y n ) = 

N ∑ 

n =1 

αn L ω k (Y n, (n ) ) 

g(X ) := X S (X ) . 

The constraints are expressed as follows: 

Y = (I T , . . . , I T ) T X := G X . 

The optimization problem in (9) is well structured since both sets of variables Y and X are separated. This allows one to

solve Y and X in two decoupled subproblems. 

By attaching the Lagrangian multiplier M = (M 1 , . . . , M N ) 
T ∈ K to the linear constraints, the augmented Lagrangian func-

tion of (9) is given by 

L (X , Y, M ) = f (Y) + g(X ) + 〈M , G X − Y〉 K + 

β

2 

‖ G X − Y‖ 

2 
K 

= X S (X ) + 

N ∑ 

n =1 

(
f n (Y n ) + 〈 M n , X − Y n 〉 + 

β

2 

‖ X − Y n ‖ 

2 
F 

)
, (10) 

where β is the penalty parameter for the violation of the linear constraints. More specifically, to approach a solution of (10) ,

the ADMM solves the following subproblems at each iteration: { 

Step 1: X 

k +1 ∈ arg min L (X , Y 

k , M 

k ) 

Step 2: Y 

k +1 ∈ arg min L (X 

k +1 , Y, M 

k ) 

Step 3: M 

k +1 = M 

k + β(G X 

k +1 − Y 

k +1 ) . 

In Step 1, we solve the following subproblem: 

X 

k +1 ∈ arg min 

X 

{ 

X S (X ) + 

N ∑ 

n =1 

〈 M 

k 
n , X − Y 

k 
n 〉 + 

N ∑ 

n =1 

β

2 

‖ X − Y 

k 
n ‖ 

2 
F 

} 

. (11) 
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It is easy to see that the objective function of (11) is differentiable, thus X 

k +1 has a closed-form solution: 

X 

k +1 = 

1 

Nβ

( 

N ∑ 

n =1 

(βY 

k 
n − M 

k 
n ) 

) 

�c 

+ B , (12)

where �c is the complementary set of the index set �. 

In Step 2, we solve the following subproblem: 

Y 

k +1 ∈ arg min 

Y 

{ 

N ∑ 

n =1 

(
f n (Y n ) + 〈 M 

k 
n , X 

k +1 − Y n 〉 + 

β

2 

‖ X 

k +1 − Y n ‖ 

2 
F 

)} 

. (13)

By noting that the objective function of (13) is a sum of independent non-negative functions, we can solve each Y 

k +1 
n sepa-

rately. Thus, let us consider solving the typical variable Y 

k +1 
n : 

Y k +1 
n, (n ) 

= arg min 

Y n, (n ) 

{
αn L ω k (Y n, (n ) ) + 〈 M 

k 
n, (n ) , X 

k +1 
(n ) 

− Y n, (n ) 〉 + 

β

2 

‖ X 

k +1 
(n ) 

− Y n, (n ) ‖ 

2 
F 

}

= arg min 

Y n, (n ) 

{ 

αn 

β
L ω k (Y n, (n ) ) + 

1 

2 

‖ Y n, (n ) − X 

k +1 
(n ) 

− 1 

β
M 

k 
n, (n ) ‖ 

2 
F 

} 

, (14)

where ω 

k = (1 / (σ1 (Y 
k 
n, (n ) 

) + ε n ) , . . . , 1 / (σI n (Y 
k 
n, (n ) 

) + ε n )) T . 

For solving (14) , a lemma [42] has to be introduced. 

Lemma 1. Given X (n ) ∈ R 

I n ×
∏ 

i � = n I i and 0 ≤ ω 

k 
1 

≤ · · · ≤ ω 

k 
I n 

, a minimizer to 

min 

X (n ) 

1 

2 

‖ X (n ) − M‖ 

2 
F + τ L ω k (X (n ) ) , (15)

is given by the weighted SVT operator T ω k ,τ (M) : 

T ω k ,τ (M) = U(� − τdiag (ω 

k )) + V 

T , (16)

where U �V 

T is the SVD of M. 

Let τ = αn /β, then we can obtain Y k +1 
n, (n ) 

by applying Lemma 1, namely, 

Y k +1 
n, (n ) 

= T ω k ,τ (X 

k +1 
(n ) 

+ 

1 

β
M 

k 
n, (n ) ) 

= U 

k (�k − τdiag (ω 

k )) + (V 

k ) T , (17)

where U 

k �k ( V 

k ) T is the SVD of X k +1 
(n ) 

+ 

1 
β

M 

k 
n, (n ) 

. 

As the above derivation is available for any n ∈ { 1 , 2 , . . . , N} , Y 

k +1 is therefore 

Y 

k +1 = (Y 

k +1 
1 , . . . , Y 

k +1 
N ) T 

= ( fold 1 (Y 
k +1 

1 , (1) 
) , . . . , fold N (Y 

k +1 
N, (N) 

)) T . (18)

Based on the previous derivation, we develop the following ADMM iterative scheme for the model (5) , as outlined in

Algorithm 1 . 

Algorithm 1 Solving the model (5) via ADMM. 

Input: Nth-order tensor B , index set �, parameters β and ε. 

Initialize: Y = 0 , M = 0 , tol = 10 −5 , and K = 500 . 

1: for k = 1 to K do 

2: Update X 

k +1 by (12) 

3: for n = 1 to N do 

4: Update Y 

k +1 
n by (17) 

5: end for 

6: Update the multiplier M 

k +1 by 

M 

k +1 = M 

k + β(G X 

k +1 − Y 

k +1 ) 

7: Check the convergence condition 

‖ X 

k +1 − X 

k ‖ F / ‖ X 

k ‖ F < tol 

8: end for 

Output: X . 

Algorithm 1 can be accelerated by adaptively changing β . One of the efficient strategies [51] is to increase β iteratively

by a multiple t , i.e., βk +1 = tβk , where β0 is the input of β in Algorithm 1 , and t ∈ [1.1, 1.2]. However, the proposed model

(5) is non-convex, and the proof of the convergence properties of the ADMM in theory is still an open issue [52] . 
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Table 1 

RSE ( ×10 −6 ) comparison of the results for different dimensions with different sampling rates. 

T = R 
20 ×20 ×20 , r = 2 T = R 

20 ×20 ×20 ×20 , r = 2 

Algorithm SR RSE Iter Time (s) Algorithm SR RSE Iter Time (s) 

HaLRTC 10% — – – HaLRTC 10% — – –

30% 33.1 143 0.199 30% 5.85 78 2.099 

50% 7.02 75 0.131 50% 3.84 33 0.884 

ADMM-TR(E) 10% — – – ADMM-TR(E) 10% — – –

30% 73.9 132 0.175 30% 11.7 76 2.313 

50% 9.70 74 0.101 50% 6.40 33 0.982 

Our method 10% 252 209 0.540 Our method 10% 13.3 102 5.459 

30% 6.32 166 0.432 30% 4.95 50 2.659 

50% 3.72 57 0.144 50% 4.49 46 2.481 

T = R 
20 ×20 ×20 ×20 ×20 , r = 2 T = R 

20 ×30 ×40 ×50 , r = 2 

Algorithm SR RSE Iter Time (s) Algorithm SR RSE Iter Time (s) 

HaLRTC 10% — – – HaLRTC 10% 784 220 45.663 

30% 7.88 66 37.798 30% 7.12 59 12.722 

50% 8.89 36 22.936 50% 5.19 35 7.621 

ADMM-TR(E) 10% — – – ADMM-TR(E) 10% 927 195 47.880 

30% 29.0 61 35.101 30% 12.8 60 14.855 

50% 11.3 35 21.358 50% 7.16 36 9.018 

Our method 10% 9.00 79 126.808 Our method 10% 7.55 147 97.605 

30% 5.51 62 110.767 30% 5.22 69 46.453 

50% 4.47 38 67.547 50% 5.11 48 31.920 

Table 2 

RSE ( ×10 −6 ) comparison of the results for different n -rank. 

n -rank HaLRTC ADMM-TR(E) Our method 

(2, 2, 2) 18.8 7.08 3.54 

(4, 4, 4) 12.2 7.08 4.92 

(6, 6, 6) 11.8 13.9 4.84 

(2, 4, 6) 12.1 22.1 5.60 

 

 

 

 

 

 

 

 

 

 

 

 

5. Numerical experiments 

In this section, we compare our method with HaLRTC [14] and ADMM-TR(E) [15] . Both belong to the nuclear norm

method. All the tests are performed under Windows 7 and Matlab Version 8.2.0.701 (R2013b) running on a desktop PC with

an Inter Core i3-4160 CPU at 3.60 GHz and 4 GB of memory. 

The masked data B are obtained by random sampling. The weights αn (n = 1 , . . . , N) describe the importance of

rank( X ( n ) ), i.e., the αn will be set larger if the mode- n fibers are more correlative. In this paper, we mainly study the ef-

fects of the logDet function and nuclear norm, so we set the common variables the same, namely, the constants αn are set

to be 1/ N . For simplicity, we set the parameters ε 1 = · · · = ε N = ε. Their values are related to the pixel values of X : (1) the

magnitude of ε is 10 −5 , 10 −6 , or 10 −7 according to the different ranges of pixel values of X ; (2) if the range of pixel values

of X is in [0, 1], then ε = m × 10 −5 , where m = 1 , 2 , . . . , 9 ( m = 1 in our experiments). 

5.1. Synthetic data 

In this section, we test the proposed model on synthetic data. The test synthetic data are generated by Tucker decompo-

sition: 

X = C ×1 A 1 ×2 · · · ×N A N , 

where C ∈ R 

r 1 ×r 2 ×···×r N is the core tensor and A n ∈ R 

I n ×r n for n = 1 , 2 , . . . , N are the factor matrices. The core tensor and

the factor matrices are all standard independent and identically distributed (i.i.d) Gaussian entries. In our experiments, the

core tensor C and the factor matrices A n ∈ R 

I n ×r n are generated by MATLAB commands randn (r 1 , . . . , r N ) and randn ( I n , r n ),
respectively. Thus, the n -rank for the generated tensor X ∈ R 

I 1 ×···×I N is (r 1 , . . . , r N ) . Furthermore, we set r 1 = r 2 = · · · = r N = r

for simplicity, and the order of the tensor varies from three to five. The index set � is generated uniformly at random, and

we sample a few entries from X at the positions in �. 

The quality of the estimated tensor is measured by the relative squared error (RSE), which is defined by 

RSE = 

‖ X − ˜ X ‖ F 

‖ ̃

 X ‖ F 

, 
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Fig. 3. The recovered results for video “suzie”. From left to right: the original frame, the masked frame, and the estimated results by HaLRTC, ADMM-TR(E), 

and our method. From top to bottom: the sampling rates are 10%, 30%, and 50%, respectively. 
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Fig. 4. The PSNR values and the SSIE values recovered by HaLRTC and our method for every frame. From left to right: the sampling rates are 10%, 30%, and 

50%, respectively. 

 

 

 

 

 

 

 

where ˜ X and X are the original tensor and the estimated tensor, respectively. 

We test four synthetic data of size 20 ×20 ×20, 20 ×20 ×20 ×20, 20 ×20 ×20 ×20 ×20, and 20 ×30 ×40 ×50 with different

sampling rates (SR), i.e., SR = 10% , SR = 30% , and SR = 50% . The results are summarized in Table 1 . In this table, “Iter”

and “Time (s)” denote the number of the iterative step and the MATLAB CPU time, respectively, and “—” denotes that

the RSE value is greater than 5 × 10 −1 , which means the corresponding method fails. From this table, one can make the

following observations: (1) the larger the sampling rate, the better the results recovered by all methods; (2) for different

dimensional tensors, our results are the best; (3) our method can recover a better result for both low sampling rates and

high sampling rates, but the HaLRTC and the ADMM-TR(E) methods fail for the 10% sampling rate; (4) our method costs

more cpu time than the HaLRTC and the ADMM-TR(E) methods, because our method is non-convex and uses the singular

value decomposition twice per iteration. 
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Table 3 

PSNR and SSIE comparison of the results. 

Video SR (%) HaLRTC ADMM-TR(E) Our method 

PSNR SSIE PSNR SSIE PSNR SSIE 

akiyo 10 25.26 0.7976 25.25 0.7975 34.52 0.9454 

30 32.32 0.9454 32.32 0.9454 42.09 0.9881 

50 37.92 0.9833 37.92 0.9833 47.10 0.9660 

bridge 10 31.06 0.8450 31.06 0.8450 37.69 0.9288 

30 36.61 0.9355 36.61 0.9355 39.97 0.9537 

50 39.84 0.9635 39.84 0.9635 42.13 0.9708 

carphone 10 22.37 0.7019 22.36 0.7017 30.75 0.8816 

30 29.17 0.8962 29.17 0.8962 35.46 0.9540 

50 33.74 0.9573 33.74 0.9573 38.86 0.9781 

claire 10 26.81 0.8760 26.81 0.8760 36.03 0.9562 

30 34.21 0.9642 34.21 0.9642 42.29 0.9856 

50 39.43 0.9866 39.43 0.9866 46.69 0.9936 

coastguard 10 20.50 0.5207 20.50 0.5206 25.77 0.7471 

30 24.54 0.7605 24.54 0.7605 30.15 0.9010 

50 28.19 0.8879 28.19 0.8879 33.97 0.9588 

container 10 22.63 0.7742 22.62 0.7741 31.40 0.9517 

30 28.89 0.9222 28.89 0.9222 39.98 0.9800 

50 34.49 0.9719 34.49 0.9720 46.88 0.9941 

foreman 10 19.66 0.5165 19.66 0.5166 28.50 0.8320 

30 25.94 0.8039 25.94 0.8039 34.14 0.9426 

50 30.79 0.9226 30.79 0.9226 38.47 0.9776 

hall 10 22.52 0.7527 22.52 0.7526 30.56 0.8930 

30 29.05 0.9184 29.05 0.9184 35.62 0.9568 

50 33.68 0.9654 33.68 0.9654 39.07 0.9792 

highway 10 26.45 0.7355 26.45 0.7355 31.59 0.8737 

30 30.85 0.8853 30.85 0.8853 34.71 0.9295 

50 34.29 0.9443 34.29 0.9443 37.08 0.9587 

news 10 20.99 0.6977 20.99 0.6977 29.07 0.8610 

30 27.17 0.8902 27.17 0.8902 34.26 0.9514 

50 32.03 0.9585 32.03 0.9585 38.31 0.9805 

salesman 10 23.68 0.6511 23.68 0.6510 31.78 0.8948 

30 30.10 0.8888 30.10 0.8888 36.60 0.9614 

50 34.81 0.9589 34.81 0.9589 40.60 0.9840 

escalator 10 17.87 0.5537 17.88 0.5538 23.43 0.8012 

30 23.18 0.8411 23.18 0.8411 27.44 0.9128 

50 27.15 0.9339 27.15 0.9339 30.52 0.9594 

 

 

 

 

 

 

 

 

Next, we study the influence of ranks. In this example, we test the data of size 50 ×50 ×50, and the n -rank of the tensor

is set to be (2, 2, 2), (6, 6, 6), (10, 10, 10), and (2, 4, 6). The sampling rate is set to be 30% in this test. We display the

results in Table 2 . From this table, we can see that the results recovered by our method are better than those from the

other methods. 

5.2. Real data 

In this section, we test the proposed method on video, hyperspectral images, and MRI. We quantitatively evaluate the

quality of the estimated tensor via peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index [57] . Given a

ground-truth tensor ˜ X , the PSNR of an estimated tensor X is computed by the standard formula 

PSNR (X , ̃  X ) = 10 log 10 

n ̃

 X 

2 
max 

‖ ̃

 X − X ‖ 

2 
F 

, 

where n denotes the number of the pixels in the tensor, and 

˜ X max is the maximum pixel value of the original tensor. Given

an original matrix ˜ X , the SSIM of the estimated matrix X is defined by Eq. (13) of [57] 

SSIM (X, ˜ X ) = 

(2 mean (X ) mean ( ̃  X ) + c 1 )(2 cov (X, ˜ X ) + c 2 ) 

( mean ( X ) 2 + mean ( ̃  X ) 2 + c 1 )( std ( X ) 2 + std ( ̃  X ) 2 + c 2 ) 
, 

where mean( A ), std( A ), and cov( A, B ) denote the mean value of A , the standard deviation of A , and the covariance of A and

B , respectively, and c 1 and c 2 are constants. For the real tensor data, we calculate the SSIM of its mode-1 unfolding as the

SSIM value of the tensor. 
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Fig. 5. The recovered results for hyperspectral images. From left to right: the original frame, the masked frame, and the estimated results by HaLRTC, 

ADMM-TR(E), and our method. From top to bottom: the sampling rates are 10%, 30%, and 50%, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.1. Video 

In this section, we study the performance of HaLRTC, ADMM-TR(E), and the proposed method. The test videos are down-

loaded from http://trace.eas.asu.edu/yuv/ , which are in color in the YUV format. In the experiments, the videos are converted

into RGB. The color video is a fourth-order tensor 1 . In Fig. 3 , we illustrate the recovered results of one frame of “suzie” of

size 144 ×176 ×3 ×150 by HaLRTC, ADMM-TR(E), and the proposed method with different sam pling rates. From the figure, we

see that the proposed method obtains higher-quality results for all sampling rates. In particular, for the 10% sampling rate,

the HaLRTC and ADMM-TR(E) methods cannot recover clear details, whereas our results are satisfactory. The PSNR and SSIE 2

values against the frame number are plotted in Fig. 4 . It can be seen that our method performs better in terms of PSNR and

SSIE values for every frame and all sampling rates. Moreover, more videos are also tested, and the results are summarized

in Table 3 . From this table, it can be seen that the results recovered by the proposed method are always better than those

of other methods. 

5.2.2. Hyperspectral image 

In this section, the proposed method is applied to the hyperspectral image recovery. The hyperspectral data used in the

experiments are a 150 ×150 pixels subset of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Cuprite data 3 with 188

spectral bands, see [58–60] for more details. We test three different sampling rates: 10%, 30%, and 50%. The results recovered

by HaLRTC, ADMM-TR(E), and the proposed method are shown in Fig. 5 . It is clear that our results are visually better than

those from HaLRTC and ADMM-TR(E): for the 10% sampling rate case, our method can recover satisfactory results, but the

results of HaLRTC and ADMM-TR(E) are blurry; for the 30% sampling rate case, our results contain more details. Fig. 6

shows the PSNR and SSIE values with respect to the frame number. We can see that our method obtains better PSNR and

SSIE values for every frame as compared with HaLRTC. 

5.2.3. MRI 

In this section, we test the performance of HaLRTC, ADMM-TR(E), and the proposed method on MRI data. The test MRI

data 4 are a third-order tensor of size 181 ×217 ×181. In this study, 70% of the data elements are removed at random. The

results observed from different directions are shown in Fig. 7 . Clearly, our results are sharper and visually better than those

of HaLRTC and ADMM-TR(E). To be specific, our method can reconstruct more details and sharper edges and obtain clearer
1 In our test, if the number of the video frames is larger than 150, we use the first 150 frames. 
2 Each frame of this video is in color, we calculate the SSIM of color images after converting it to grayscale. 
3 Available from http://aviris.jpl.nasa.gov/html/aviris.freedata.html 
4 Available from http://brainweb.bic.mni.mcgill.ca/brainweb/selection _ normal.html 
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Fig. 6. The PSNR values and the SSIE values recovered by HaLRTC and our method for every frame. From left to right: the sampling rates are 10%, 30%, and 

50%, respectively. 

Fig. 7. The recovered results for three directions. From left to right: the original data, the masked data, and the estimated results by HaLRTC, ADMM-TR(E), 

and our method. From top to bottom: the results for front direction, the side direction, and the top direction, respectively. The sampling rate is 30%. 

 

 

 

 

results in the homogenous regions. Fig. 8 shows the PSNR and SSIM values of every frame for three directions. We note that

our method obtains better results for every frame than those recovered by HaLRTC. 

6. Conclusions 

In this paper, we have proposed a non-convex definition for the tensor rank. Compared with the convex tensor nuclear

norm proposed by Liu et al. [14] , our definition was better at approximating the tensor rank. We introduced it into

low-rank tensor completion and developed an ADMM-based algorithm. Finally, we compared our method with HaLRTC
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Fig. 8. The PSNR values and the SSIE values recovered by HaLRTC and our method for every frame. From left to right: the numerical values for front 

direction, the side direction, and the top direction, respectively. The sampling rate is 30%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and ADMM-TR(E) on synthetic and real data with different sam pling rates. The experimental results have shown that the

proposed method was more effective, especially for the 10% sampling rate. 
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