
 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

Toward Universal Stripe Removal via
Wavelet-Based Deep Convolutional

Neural Network
Yi Chang , Student Member, IEEE, Meiya Chen, Luxin Yan , Member, IEEE, Xi-Le Zhao ,

Yi Li, and Sheng Zhong

Abstract—Stripe noise from different remote sensing imaging section, we will first provide a comprehensive and systematic
systems varies considerably in terms of response, length, angle, review of the previous destriping methods. Then, we will
and periodicity. Due to the complex distributions of differ- analyze the remaining challenges in this field. Lastly, we will

provide our solution to solve these challenging issues.ent stripes, the destriping results of previous methods may
be oversmoothed or contain residual stripe. To overcome this
key problem, we provide a comprehensive analysis of existing
destriping methods and propose a deep convolutional neural
network (CNN) for handling various kinds of stripes. Moreover,
previous methods individually model the stripe or the image
priors, which may lose the relationship between them. In this
article, a two-stream CNN is designed to simultaneously model

A. Related Work
In Table I, we list most of the image destriping methods

and their main features. We mainly consider the year of
publication, input, imaging system, utilization of the direction,

the stripe and image, which better facilitates distinguishing them utilization of the image and stripe, and the speed. Next, we will
from each other. Moreover, we incorporate the wavelet into provide a brief description of each kind of destriping method.
our CNN model for better directional feature representation. 1) Statistical Matching: The statistical matching methods

usually refer to histogram matching and moment matching
[1]–[5] and were the dominant approaches before 2000, which
mainly include two steps: the clean reference finding and

Therefore, the CNN learns the discriminative representation from
the external data set, while the wavelet models the internal
directionality of the stripe, in which both the internal and
external priors are beneficial to the destriping task. In addition,
the wavelet extracts the multiscale information with a larger statistical matching. Thus, the success of statistical matching
receptive field for global contextual information modeling; thus, relies heavily on finding a clean reference. In 1979, Horn and

Woodham [1] proposed the first histogram matching method
for Landsat images destriping. To find a suitable reference
line, Wegener [2] implicitly considered the local smoothness

we can better distinguish the stripe from the similar image line
pattern structures. The proposed method has been extensively
evaluated on a number of data sets and outperforms the state-
of-the-art methods by substantially a large margin in terms of
quantitative and qualitative assessments, speed, and robustness. of the image and proposed to calculate the statistics only over

homogeneous regions. This approach is generally effective forIndex Terms—Convolutional neural network (CNN),
destriping, image decomposition, wavelet. specific imaging systems in which only a portion of them

have fixed stripes, such as the Moderate Resolution Imaging
Spectroradiometer (MODIS). However, it is difficult to find a
reference for hyperspectral images with ubiquitous stripes.
2) Digital Filtering: The filtering-based methods [6]–[19],

processing stripes in the transformed frequency domain instead
of the original image domain, were active between 2000 and
2010. They assume that the specific frequencies caused by
stripes are sparse and can be easily distinguished from the

I. INTRODUCTIONREMOTE-SENSING image stripe noise is mainly caused
by differences in the response of adjacent detectors.

Numerous research studies have been proposed to boost the
development of stripe removal in the past decades. In this
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TABLE I
COMPARISON OF EXISTING DESTRIPING METHODS AND THEIR PROPERTIES
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TABLE II
EFFECTIVENESS COMPARISON OF REPRESENTATIVE DESTRIPING METHODS FOR DIFFERENT KINDS OF STRIPES

To explicitly utilize the sparsity in the image, the variational- the ranks (or its relaxations) along each tensor mode [46],
based destriping methods benefit from the L p optimization [48], [51]. To truthfully reflect the intrinsic difference of the
solver [34]. They treat the destriping issue as an ill-posed structure correlation along each mode, we proposed a uni-
inverse problem and then optimize a variational model by directional low-rank tensor recovery model for multispectral
incorporating sparsity priors about the image. In 2009, Shen image denoising [47]. Compared with the previous methods,
and Zhang [20] first proposed the Huber–Markov-based vari- the low-rank-based methods could better preserve the structure
ational model for remote sensing image destriping within a correlation and are effective for both the stripe and random
maximum-a posteriori framework. These variational methods noises. However, the speed of the low-rank tensor methods
take the stripe as the isotropic “noise,” which fails to capture are extremely slow due to the large data size and compli-
the anisotropic property of the stripe. To model the directional cated operations, which make them unsuitable for real-time
characteristic of the stripe, the sophisticated unidirectional applications.
variation models have been extensively studied [23], [26]–[33]
and have achieved impressive performance.

6) Deep Convolutional Neural Network Model: Previous
methods design various handcrafted priors for the image/stripe

The aforementioned variational methods focus on modeling components and have achieved very great progress in destrip-
the image prior. An alternate kind of method steps toward ing field. However, these handcrafted priors may not be
the opposite direction by modeling the stripe prior with state- sufficiently discriminative to distinguish the stripe from the
of-the-art destriping performance [22], [24], [29]. The start image structures which share similar direction as the stripe.
point of the stripe estimation based methods is that, compared In last two years, discriminative-based deep convolutional
with the image component, the stripe has simpler structure and neural network (CNN) models have been naturally proposed
less unknown variable to be estimated. After they estimate the [53]–[60]. The CNN-based methods learn the feature of the
stripe component, they could obtain the clean image via the stripe in a supervised manner and benefit us to differentiate the
degradation model indirectly. stripe from the image structure from a global receptive field.
4) Low-Rank Matrix Recovery Model: Most of the pre- Several nonuniform stripe noise removal methods have been

vious single-image-based methods may lose the spectral proposed for the single infrared image with a shallow CNN
coherence by processing each band individually. To rem- model [53]–[55]. Later, the residual learning strategy along
edy this issue, the low-rank-based matrix recovery methods with the deep CNN was introduced and achieved better perfor-
[35]–[45] have been naturally proposed in recent years. They mance [56]–[60]. However, these discriminative methods only
take advantage of the low-rank property along the spectral consider learning from the external data set while ignoring the
mode by lexicographically ordering the 3-D cubic into a 2-D internally directional property of the stripe. Moreover, they
matrix [37]. To cooperate with the global low-rank constraint, neglect to explicitly model the correlation between the image
the local/nonlocal sparsity regularizer has been additionally and stripe.
incorporated into the low-rank model to further refine the
restoration results [36], [38], [40], [42], [45]. In contrast,
Chang et al. [41], [43] exploited a stronger low-rank property B. Remaining Challenges
in the stripe component within an image decomposition frame- The destriping issue has been extensively studied over
work. We hold the viewpoint that modeling both the image and 40 years with very impressive results. However, there are still
the stripe component are useful for their decoupling. several challenges to be solved. In this section, we will present
5) Low-Rank Tensor Recovery Model: Although the vector-/ two key challenges with a brief analysis.

matrix-based methods have achieved excellent destriping 1) Robustness: We have listed the robustness of some rep-
results, they inevitably cause damages to the spectral–spatial resentative destriping methods in Table II. The stripe category
structural correlation for the 3-D inputs. To alleviate this issue, will be presented in Section II. The previous methods are
the low-rank tensor recovery methods have emerged in the designed for specific stripes with strong assumptions. For
last two years [46]–[52]. Some of them simply added up example, the filtering-based methods utilized the periodicity
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Fig. 1. Category of the stripe noise. We classify the stripe noise in both the push-broom (representative hyperspectral imaging) and whisk-broom (representative
MODIS) from their appearances into sixteen classes. Their visual images are shown in the second row. Some statistical histograms of the representative stripes
are shown in the last row, which is very different for each stripe.

of the stripes [6], [10]. Most of the existing destriping method
are designed for the stripes, without considering the influence
of the random noise [13], [22], [23], [33], [41]. In addition,
the low-rank-based methods exploited the spectral correlation,
where this property may be lost in a single image. Some
methods assumed that the stripe is intact with full length [22].
Therefore, we can conclude that the previous methods are less
effective for all kinds of stripes. The main reason is that the
distributions of the various stripes are obviously different from
each other, as shown in the third row in Fig. 1. Precisely,
modeling these distributions of the different stripes via an
exact mathematical formulation is difficult. Thus, the crucial
factor for robust destriping is determining how to model
various stripes with different distributions.

Fig. 2. Limitation of conventional methods. Residual stripe (WFAF) and
over-smooth (DLS) phenomenon can be observed in previous methods.

2) Discriminative: Even for the conventional and common
vertical additive stripe, when the intensity of stripe varies a lot,
especially too large, it is very hard for the previous methods to
differentiate the stripe from the image structures which share
the similar direction as the stripe. Consequently, the previous
destriping methods may over-smooth the image structures or
contain residual stripes, as shown in Fig. 2. For example,
the filtering-based wavelet Fourier adaptive filter (WFAF) [13]
mainly makes use of an internal handcrafted feature. There

both components is much more discriminative for separating
them [41]. Therefore, discovering how to jointly utilize the
internal and external features for both the image and stripe
components is also a key factor for better destriping.

C. Our Solution and Contribution
To contend with the first challenge, we propose implement-

are obvious residual stripe effects in Fig. 2(left). In contrast, ing the CNN for representing various stripes. As observed
the deep learning-based stripe nonuniform correction (DLS- in Fig. 1, the distributions of various stripes are obviously
NUC) method [54] only takes advantage of the external data different. Moreover, due to the structural correlation of the
set. We can observe that the image structure that has the same stripe “noise,” the distributions are always non-Gaussian,
direction as the stripe has been unexpectedly removed along nonidentical, and nonindependent. Therefore, it is difficult for
with the stripe, which may be less discriminative for the stripe the previous Gaussian or mixture of Gaussian (MoG)-based
and sharp image edges. A similar phenomenon has also been methods to fit these stripes precisely. We demonstrate that the
observed in the local gradient-based unidirectional variational U-Net [62] can fit various distributions better than the previous
model [23]. In addition, most of the previous methods only methods (see Section III-A1). The CNN learns the feature of
extract the features of the image or the stripe component. the stripe from a very large receptive field, which utilizes the
It is naturally understood that the joint representation of global contextual information and benefits us to differentiate
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the stripe from the image structure. Moreover, to facilitate the the striping effect has different appearances depending on the
training, we enhance the U-Net with the residual block [63] scanning mechanism of imaging instruments. The interested
for better feature propagation and reuse (see Section III-A2). reader can refer to [33] for details. In this article, we provide
To address the second challenge, we argue that both the a more comprehensive classification of the stripes in remote

learned discriminative features from the external data set sensing images, as shown in Fig. 1.
and the handcrafted discriminative features extracted from According to the detector response, the stripe can be
the internal image are beneficial for stripe representation. classified into additive and multiplicative types. The additive
We analyze the relationship between the handcrafted-based stripe is signal-independent, whereas the multiplicative stripe
wavelet and learning-based CNN both experimentally and is signal-dependent. The intensities of the additive stripe along
theoretically (see Section III-B1). The wavelet is an effective the stripe are ranging in a small interval, and close to a con-
tool for modeling the intrinsical directional characteristic of stant value. The intensity of the multiplicative stripe is highly
the stripe [13], the multiscale representation of the image [27], associated with the image. That is, the stripe is much darker
and the lossless decomposition and reconstruction [64]. Thus, in the low-intensity region, whereas the stripe is brighter
we propose embedding the wavelet into the end-to-end CNN in the high-intensity region, which makes the multiplicative
network to achieve better performance (see Section III-B2). stripe more difficult to remove. Most of the previous methods
In our previous work [41], we proposed to treat the destrip- focus on the additive stripe, and only the authors in [20],

ing task from an image decomposition perspective, in which [22], [41] have tried to handle the multiplicative stripe. It is
these two components are treated equally and decoupled worth noting that the additive model can be well applied to
iteratively. Utilizing the discriminative features from both the multiplicative case by applying the logarithm, as in [22];
components is beneficial for separating them. In this arti- however, it may fail in the presence of both the additive and
cle, we follow the decomposition idea and implement this multiplicative stripes.
framework via a multitask learning-based two-stream CNN According to the intensity, the stripe can be classified
(see Section III-C1). The image stream aims at reconstructing as a normal or deadline stripe. The normal stripe has a
the clear image. The stripe stream focuses on extracting the common intensity, whereas the intensity of the deadline stripe
features of the stripe. The extracted features, including the is all zeros. The deadline stripes do not convey any useful
intensity, location, and angle, to name a few, function as an information and are caused by the failure of certain detectors.
attention map and are fed into the image stream to guide the It is very difficult for conventional denoising-based methods
final reconstruction (see Section III-C2). to reconstruct the original image. Some methods resort to the
In summary, we provide a comprehensive classification of spectral correlation of the multispectral images [37]. In our

the remote sensing stripes (see Section II) and a brief property opinion, the removal of deadline stripes has been better treated
survey of the existing destriping methods that can serve as as an image inpainting task, as in [20].
an elementary work for beginners in this field. Moreover, According to the angle, the stripe can be divided into verti-
we point out two major challenges in this field and propose a cal/horizontal and oblique ones. The stripe should be horizon-
preliminary solution for both of them. Our contributions can tal or vertical due to the imaging principle. However, for the
be summarized as follows. subsequent remote sensing product, the geometric registration
1) We formulate the destriping issue as a discriminative would cause the oblique stripe. Most of the previous methods

multitask learning problem. The two-stream CNN jointly can only handle the vertical/horizontal stripe, especially the
extracts the image and stripe features interacting with directional-based models [23], [41]. A natural idea to process
each other, which makes our method more representative the oblique stripe is to transform it into the original domain
for various kinds of stripes with different distributions. [43]. However, this may cause an information loss due to

2) To increase the discriminative ability, apart from the the interpolation operator in the transformation. The recent
external prior, we additionally utilize the internal prior variational model [32] can only handle the fixed angle oblique
via the wavelet for extracting the intrinsically directional stripe, which limits its application in real settings.
feature in the stripe and the multiscale feature in the
image.

According to the proportion, the stripe can be divided into
partial and entire proportion ones. Generally, the partial pro-

3) We have extensively evaluated our method on various portion stripe appears in the whisk-broom imaging system, and
remote sensing images with state-of-the-art performance the entire proportion stripe occurs in the push-broom imaging
in both quantitative and qualitative assessments. Our system. The entire proportion stripe cannot be handled by the
method is effective for an arbitrary image with stripe previous statistical matching methods [1]–[5] since no clean
noise. reference line can be found. Most of the presented destriping

methods can satisfactorily remove the partial proportion stripe
due to its simplicity.
According to the length, the stripe can be classified as

a full or broken stripe. For the full-length stripe, it can be
post-processed via the feature of its length. The broken stripe
(known as random stripe in MODIS) means that each stripe

In Section II, the category of stripe noise is analyzed.
The detailed architecture is described in Section III. The
experimental results and discussion are reported in Section IV.
Finally, we conclude this article in Section V.

II. CATEGORY OF STRIPES
There are mainly two different remote sensing image may possess an arbitrary length. This would make it difficult

systems: push-broom and whisk-broom imaging. Moreover, to distinguish the stripe from the line pattern of the image



 

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 3. Framework of the proposed network. Our two-stream wavelet enhanced U-net (TSWEU) is built on two parallel streams for stripe and image
feature extraction, and a reconstruction module to restore the clean image with the guidance of the stripe. The skip connections are introduced for better
information interaction among the two streams. Moreover, the wavelet is embedded into the streams for better image and stripe representation with lossless
downsampling/upsampling.

structure. Moreover, the line pattern structure would be unex-
pectedly removed by the unsupervised methods along with
the stripe. This validates that we need to extract discriminative
features or utilize the contextual information to assist removing
the stripe and preserving the image structure.
According to the periodicity, the stripe can be classified

as a periodical or nonperiodical stripe. The periodical stripe
appears only in the whisk-broom imaging system due to its

Fig. 4. Advantage of the CNN over Gaussian model for modeling the stripe.
Distributions of (a) additive stripe and (b) mixed noise.imaging mechanism. The periodical stripe can be identified by

the specific spectrum in the frequency domain, which has been
well handled by the filtering methods [6]–[19]. The nonperi-
odical stripe mainly occurs only in the push-broom imaging
system. Compared with the periodical stripe, the nonperiodical
would inevitably damage the low-rank property or sparsity in
the image. Generally, the nonperiodical stripe is much more
difficult to remove [41].

previous single-image-based methods fail to handle this case.
In this article, we resort to the external clean data set for
single-image heavy mixed noise removal.

III. TWO-STREAM-BASED WAVELET ENHANCED
U-NET MODELAccording to the width, stripes can be divided into single

and broad stripes. The single-width stripe can be well removed
by the previous methods due to its simplicity. When a broad
stripe exists, the performance of single-image-based methods
would degenerate rapidly, especially smoothness-based meth-
ods [10], [19], [20]. It is worth noting that the width and
the proportion are very close but are not the same. Here,
a broad stripe means that several adjacent stripes have similar
intensities, making the stripe extremely difficult to remove.
Normally, a stripe coexists with random noise in remote

sensing images. The mixed random noise and structural stripe
make the distribution of the noise complicated; therefore,
simply modeling with the Gaussian or the MoG is difficult.
According to the noise level, the stripe can be divided into light

As illustrated in Fig. 3, our proposed two-stream-based deep
CNN is composed of two complementary components: one
stream for stripe estimation and the other stream for image
reconstruction. The stripe estimation stream is trained to infer
the various distributions of the stripe “noise.” Meanwhile,
the internal directional property is extracted via the embedded
wavelet. The image reconstruction stream is trained to recover
the clean image with the lossless-based multiscale wavelet.
Moreover, the two-stream intermediate features are further
merged as an attention map for improving the discrimination.

A. External Prior: EU Model
1) Advantage Over Gaussian Model: Most of the previous

and heavy mixed noise. Most of the previous methods handle methods treat the stripe as “noise” and apply the conventional
the mixed noise by utilizing the spectral correlation of the Gaussian model or MoG for modeling the noise [20], [25],
multispectral image. In our previous work, we proposed two [44]. However, from the physical degradation and its visual
elaborate models for single-image light mixed noise removal appearance, we know the distribution of the stripe is obviously
[26], [43]. For the heavy mixed noise, the useful information nonindependent. Moreover, different stripes possess distinctly
in the image would be overwhelmed by the noise, whereas different distributions in Fig. 1. It is very difficult to construct
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Fig. 5. Effectiveness of the U-Net, resblock, wavelet, and two-stream framework. We plot the curve of (a) training loss, (b) testing PSNR, and (c) testing SSIM.
We start the CNN from the plain network, and gradually increase each term. The black curve denotes the plain CNN without upsampling and downsampling.
The blue curve represents the U-Net with larger receptive field. The green curve is the EU model with short connection based residual block. The orange
curve means the wavelet embedded WEU model. The red curve stands for the proposed image decomposition based TSWEU.

a precise mathematical formulation to fit the distributions of supports the effectiveness of the residual blocks for better
different stripes. In this article, we bypass the difficulty of information propagation. In Fig. 5(b) and (c), the PSNR and
constructing the handcrafted distribution function. In contrast, SSIM values of the EU are consistently higher than those of
we start from the data-driven perspective and resort to the the original U-Net with iterations.
universal approximation ability of the CNN for an arbitrary
signal [65]. We find that the CNN has a vast advantage in
structural noise modeling. B. Internal Prior: WEU Model
To illustrate this, we plot the distributions of two kinds

of stripe noise in Fig. 4, marked by the blue curve. Then,
we show the distribution of estimated noises by both our
CNN model (red curve) and the Gaussian model (black curve).
In Fig. 4(a), the distribution of the additive stripe is very
complex. The learned distribution of the CNN is much closer
to the original one. In Fig. 4(b), the distribution of the mixed
noise exhibits a Gaussian-like shape. Both the CNN model
and Gaussian model are approximated to the ground truth.
However, the CNN model can well fit the high-frequency parts,
such as the range from [20, 60]. For the low-frequency parts,
the CNN model can also capture the small variance. Overall,
the CNN model consistently fits better than the conventional
Gaussian model for different kinds of stripe noise.
2) EU: In this article, we employ the U-Net as our baseline,

which has been widely used in image segmentation [62], image
deblurring [66], and so on. The success of the U-Net relies
heavily on the long-term skip connection between different
layers for better feature reuse and information propagation.
However, DenseNet [67] has demonstrated that the dense
connections between both the short- and long-distance layers
would be beneficial for the feature representation. Motivated
by this, we additionally introduce the short-term connection-
based residual blocks [63] into U-Net, as shown in the red
dash blocks in Fig. 3.

In this section, we first introduce the relationship between
the wavelet and the CNN. Then, the advantage of the wavelet
embedded in the EU is analyzed.
1) Relationship Between Wavelet and CNN: The discrete

wavelet transform (DWT) is governed by the choice of fil-
ters/wavelet transform for which the wavelets are discretely
sampled, such as the Haar wavelet. For the image processing
task, its solution can be roughly expressed as follows:

d d 1X  ψ X (1)
where X d is the signal of the decomposition level d, ψ is the
filtering transform operator, such as the Haar wavelet, and  is
the soft or hard threshold operator [68]. Similarly, the output
of the dth layer of a convolutional layer can be expressed as
follows:

d d d 1 d RRd Cd BdX S W X P (2)
where X
projection matrix to be learned, P
the convolutional operator, R , C , and B are the spatial row,

d is the output of the dth layer, W d is the
d is the bias vector, is

d d d
column, and channel number of the dth layer, respectively, and
S : R R is the nonlinear activation function that handles
each pixel individually, such as the sigmoid.To illustrate the effectiveness of the EU, we compare the

EU (green curve) with the original U-Net (blue curve) and
plain network (black curve), as shown in Fig. 5. We plot their
training loss and destriping peak signal-to-noise ratio/structure
similarity (PSNR/SSIM) curves along with the epoch. By com-
paring the blue curve with the black curve, we can conclude
that the downsampling and upsampling operators that induced
a larger receptive field is a key factor in the destriping task.
This is very reasonable since the stripes always run throughout
the whole image. In Fig. 5(a), the training loss of the EU is
obviously lower than that of the original U-Net, which strongly

From the mathematical formulations of (1) and (2), we can
find that they are very similar to each other. Moreover, their
physical meanings are the same: transform the input dth
level/layer image into the feature domain via ψ or W d , acti-vate the sparse features via the nonlinear activation function
 or S, and then repeat/recurse this procedure in a hierarchical
manner. The main difference between wavelets and CNNs is
the transformation function ψ and W d . The ψ is a fixed
template for the wavelet, whereas W d is a learnable filter
for the CNN. This intrinsic similarity between them offers a
theoretical basis for embedding the wavelet into the CNN.
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Fig. 6. Feature maps comparison between the stride convolution and wavelet. The first and second rows show the feature maps (maximum response along
the channels) of the stride convolution in U-Net and wavelet, respectively. We show three different scales feature maps before (1, 3, and 5 columns) and after
(2, 4, and 6 columns) the downsampling. Compared with the stride convolution, the wavelet could better preserve the structure and the line pattern of the
stripe.
2) WEU: The learning-based methods have dominated com- in which they individually model the image or stripe prior.

puter vision since they can automatically extract abundant However, they neglect the relationship between the image and
features from a large external data set. However, we argue stripe as follows:
that the handcrafted features from the internal prior can also Y X B N (3)be very useful when the intrinsic property can be further
utilized to enhance the representative feature. In this article,
we propose to embed the wavelet into the EU. The EU relies
on the external data set to extract the feature of the line
pattern stripe. Meanwhile, the direction-aware wavelet focuses
on extracting the important feature: the directionality of the
stripe. The embedded wavelet can be regarded as a feature
attention reinforcement block that functions as a regularizer

where Y RR C is the measured image, X is the desired
clear image, B is the stripe component, and N is the random
noise. For the image decomposition problem, the general
reconstruction model can be formulated as follows:

1 2Fmin X B Y τ P X λ
P B (4)2X,B

to extract the horizontal/vertical line pattern features of the where the first term is the reconstruction term, and the second
stripe. Thus, the joint external and internal modeling makes and third terms P X and P B are the priors about the
the features more discriminative. image and stripe components, respectively. The proposed
To differentiate the stripe from the image structure, the pro- decomposition model aims to optimize two variables simul-

posed network should capture more contextual information and taneously, which can be solved via an alternative minimizing
possess as large a receptive field as possible. Apart from the strategy. Compared with the previous “denoising” methods,
depth and filter sizes of the U-Net, the downsampling and the decomposition methods additionally utilize the property
upsampling layers are the main means to enlarge the receptive of the stripe and image to strengthen the representation and
field. However, the downsampling via the convolution with further build the connection between the image and stripe
stride would inevitably introduce information loss, which is components, which significantly facilitates separating the two
harmful to the pixel-to-pixel-level image reconstruction task. components.
Fortunately, since DWT is invertible, it is guaranteed that all 2) TSWEU Module: In this article, we are motivated by
the information can be kept by such a downsampling scheme. our previous image decomposition-based destriping work [41],
To illustrate the effectiveness of the wavelet, we compare the which has shown that the joint modeling of both the image

WEU with the EU on three aspects: the feature maps, the train- and stripe is better than modeling only one of them. Our start-
ing procedure, and the testing results. Compared with the stride ing point is to extend the decomposition-based optimization
convolution, the wavelet can well extract the directional feature method to the TSWEU model. The CNN model is more rep-
of the stripes. On the other hand, the wavelet was able to resentative and robust than implementing handcrafted features.
losslessly decompose and reconstruct the features, especially For example, the low rank obviously no longer holds for the
for the shallow features, as shown in Fig. 6. In addition, oblique and mixed noise stripe, since the low rank cannot
after we replaced the stride convolution with the wavelet, capture the angle feature automatically. Similarly, the total
the training loss dropped rapidly at the early training stage variational (TV) approach only extracts the horizontal and
and was obviously lower all the time, as shown in Fig. 5(a). vertical first-order gradient feature of the image, whereas the
Moreover, the PSNR and SSIM values of the wavelet are WEU model can extract the multiscale feature in a hierarchical
slightly better than that of the stride convolution. manner.

More precisely, we replace the handcrafted low-rank and
total variation prior with the dual WEU, as shown in Fig. 3.C. Two-Stream WEU Model

1) Motivation From Decomposition: Most of the previous For the optimization of (4), it is usually converted into three
methods formulate the destriping as a denoising problem, subproblems: one for optimizing the stripe, one for optimizing
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the image, and one for reconstruction. Analogous to iterative
minimization, each WEU stream aims to extract the features of
the stripe and image. Moreover, the features in the two WEU
streams are merged together to influence each other. Finally,
the extracted features from the two streams are imported
into the reconstruction module to obtain a clear image. Thus,
the final loss is defined as follows:

α β2 2J FI Y; W X FS Y; W B (5)2 2
where F and F are the mapping functions about the parame-I S Fig. 7. Simulated and real image data set used in this article. We select

15 images as the simulated data surrounded by the red rectangle and seventer W , and α and β are the balance parameters. To verify the
effect of the two-stream framework, we also plot the training images as the real data surrounded by the green rectangle.
loss and testing values of the TSWEU model in Fig. 5. We can
conclude that the two-stream approach is beneficial for the
feature propagation and facilitates the destriping results. destriping (SLD) [22], DLS-NUC [54], transformed low-rank

(TLR) [43], weighted nuclear norm minimization (WNNM)
[72], and the framelet [73] methods. To provide a fair com-
parison, we collect 15 remote sensing images as the simulated
test data set and seven images as the real test data set, as shown
in Fig. 7.
To provide an overall evaluation of the destriping perfor-

mance, several qualitative and quantitative assessments are
used. The qualitative assessments include the visual inspection,
the mean cross-track profile, and the power spectrum. The
PSNR and SSIM [74] are employed for the quantitative
assessment. All codes are provided by the authors, and the
parameters are fine-tuned to achieve the best performance on
average. It is worth noting that we do not adjust the parameters
of competing methods for each test image but set the same
parameter for all the test images. The training code and testing

D. Training Details
For the simulation of the stripes, we take the multiplicative

stripe as an example. We generate the stripe image Y by
multiplying the input image X with the coefficient matrix A
via Y X. A [22]. The matrix coefficient is generated by
A repmat stripemax stripemin . rand 1, size X, 2
stripemin, size X, 1 , 1 , where stripemax and stripemin arepre-defined hyper-parameters which determine the range of
the multiplicative stripe. “repmat” and “size” are the Matlab
functions. The interested readers could refer to the released
simulating codes for other stripe categories.
We initialize the convolutional filters with the Xavier

method [63]. The learning rate is initially set as 0.0005 and
decreased to a small value of 0.00005. The momentum and
decay are fixed as 0.9 and 0, respectively. The ADAM
solver [69] is introduced to optimize the model. We train the
model with 100 epochs with a batch size of 24. The training
data are normalized to [0, 1]. Compared with the image,
the stripe can be regarded as the residual noise, which is much

data sets of this article can be downloaded at the homepage
of the author.1

B. Simulated Image Destriping
According to the different properties of the stripe, the stripe

more easy to be trained with smaller training error. Moreover, can be classified into several categories. In this section, we test
the intensity and area of the stripe are usually smaller than the representative and difficult stripe categories.
that of the image. When computing the reconstruction error
in (5), the error of the image is obviously larger than that focus on the additive stripe, except for the SLD [22]. We first
of the stripe. Thus, we set the hyperparameter α 0.001 transform the multiplicative stripe image into the additive
and β 1 to balance the reconstruction error between domain via the logarithm function, then apply these additive

1) Multiplicative Response: Most of the previous methods

the image and the stripe. The MatConvNet toolbox [70] is destriping methods, and finally re-transform the destriping
employed to train the TSWEU. It is worth noting that due results into the original domain via the exponent function.
to the nonuniform property of the stripe noise, a training It is worth noting that this can only be used when only the
image with a large receptive field can significantly boost the multiplicative stripe exists without any additive stripe or ran-
final destriping results. We randomly choose 20 000 samples dom noise. In addition, TSWEU can remove the multiplicative
from the Place2 data set with size 256*256 for training. Here, stripe in any condition. From the visual results in Fig. 8, most
we use the natural images as the training set since the remote of the compared methods remove the vertical image structure
sensing images vary in different imaging systems. unexpectedly. In contrast, the proposed method can satisfac-

torily preserve the line pattern of the image structure marked
by the red rectangle. Additionally, the estimated multiplicative
stripe component in Fig. 8(j) is highly signal-dependent.
2) Proportion: The removal of the full proportion stripe in

the push-broom system is usually more difficult since the stripe
covers the whole image space. In Fig. 9(c) and (h), the TV

I V. EXPERIMENTAL RESULTS AND DISCUSSION
A. Experimental Setting
We have comprehensively compared the proposed TSWEU

with the state-of-the-art destriping methods, including the
TV [71], WFAF [13], low-rank single-image decomposition
(LRSID) [41], unidirectional TV (UTV) [23], statistical linear 1http://www.escience.cn/people/changyi/index.html.
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Fig. 8. Simulated destriping results for the multiplicative case. (a) Original HSI NS_line band 142. (b) Degraded with multiplicative stripes. Destriping
results by (c) T V, (d) WFAF, (e) LRSID, (f) UTV, (g) SLD, (h) DLS-NUC, and (i) TSWEU. (g) Estimated stripes by TSWEU.

Fig. 9. Simulated destriping results for the full proportion case. (a) Original HSI Suwannee band 70. (b) Degraded with full proportion stripes. Destriping
results by (c) T V, (d) WFAF, (e) LRSID, (f) UTV, (g) SLD, (h) DLS-NUC, and (i) TSWEU. (g) Estimated stripes by TSWEU.

and DLS-NUC has oversmoothed the details unexpectedly. [see Fig. 10(i) and (j)] show that our method can well handle
There are residual stripes for the WFAF, LRSID, and SLD the random-length stripe with a significant advantage over the
that are especially obvious in the low intensity region marked previous methods.
by the red ellipse. The estimated stripe and image components
achieved with TSWEU are visually pleasing and quantitatively for different stripe noise level, as shown in Table III. Our
better than that of the other methods. TSWEU consistently outperforms the state-of-the-art methods

We also test the effectiveness of all competing methods

3) Length: Although it seems counterintuitive, it is much by a large margin of at least 5 dB, except for the SLD.
more difficult to remove the random stripe than the full-length It is worth noting that we simulate the full-length stripe with
stripe. On the one hand, the random stripe is more difficult exactly rank 1, which perfectly fits the strong assumption
to differentiate from the line pattern of the image texture. of SLD. That is the main reason why SLD performs well
On the other hand, the cross-assumption over the whole image on the full-length stripe, whereas it works poorly on the
is no longer valid, such as the low-rank assumption for LRSID random-length stripe. Moreover, with the increasing level of
and the rank 1 assumption for SLD. In Fig. 10, the existing the stripe noise, the advantage of the TSWEU is much larger.
methods are less effective for the random-length stripes, which Due to space limitations, we do not show the quantitative
usually exist in the MODIS band 33. The results of TSWEU results on the other kinds of stripes.
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Fig. 10. Simulated destriping results for the random length case. (a) Original MODIS image Aqua band 31. (b) Degraded with random length stripes.
Destriping results by (c) T V, (d) WFAF, (e) LRSID, (f) UTV, (g) SLD, (h) DLS-NUC, and (i) TSWEU. (g) Estimated stripes by TSWEU.

TABLE III
QUANTITATIVE ASSESSMENTS OF DIFFERENT METHODS UNDER DIFFERENT NOISE LEVELS

4) Periodicity: The periodical stripe shows regular patterns and TSWEU can well reconstruct the missing deadlines with
and always exists in the whisk-broom imaging system and a pleasing visual appearance. Moreover, the TSWEU obtains
is indeed easier to be removed than the nonperiodical stripe. higher quantitative indexes.
Here, we choose the typical MODIS Aqua band 22. The 6) Oblique Stripe (Angle): Most of the existing destriping
periodicity is 10. Note that the stripes not only are periodical methods are designed for the horizontal or vertical stripe
but also have a broad width. In Fig. 11, we can observe that only. The previous methods need to rotate the oblique stripe
most of the compared methods can well remove the periodical image into the horizontal/vertical ones, which would inevitably
stripe with satisfactory visual results. The estimated stripe cause an information loss due to the interpolation operator.
achieved by TSWEU is composed of exactly periodical lines. In contrast, our method can handle the oblique stripe with an
5) Deadline/Inpainting (Intensity): The deadlines are usu- arbitrary angle in the original image domain, mainly because

ally caused by the malfunction of certain detectors, which we have fed TSWEU with the oblique stripe for training. Thus,
makes the problem difficult. It is difficult to recover the the proposed TSWEU could well handle the angle variation.
useful information for the conventional single-image-based Here, we compare the TSWEU with the TLR [43] under
destriping methods. Here, we consider this problem as an different rotation angles, as shown in Fig. 13. We have three
image inpainting issue and compare the proposed TSWEU observations. First, the proposed method can better remove
with the WNNM [72] and Framelet [73] methods [25% and the oblique stripes than the TLR from both the visual and
50% missing pixels Fig. 12]. It is worth noting that the location quantitative assessments. Second, the estimated oblique stripes
of the deadlines should be provided in advance. The WNNM in the last column do not contain any residual image structure.
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Fig. 11. Simulated destriping results for the periodical and broad case. (a) Original MODIS image Aqua band 22. (b) Degraded with periodical and broad
stripes. Destriping results by (c) TV, (d) WFAF, (e) LRSID, (f) UTV, (g) SLD, (h) DLS-NUC, and (i) TSWEU. (g) Estimated stripes by TSWEU.

Fig. 12. Simulated destriping results for the deadline case. The first and second rows show the 25% and 50% missing of the HSI Washington DC and paviaU
band 20, respectively. From the first to the last column, we show the original, the degrade, and the inpainting results of Framelet, WNNM, and TSWEU.

Last but not least, TSWEU is very robust to the angle of the C. Real Image Destriping
stripe, where the conventional horizontal/vertical stripe can be
regarded as a special case in our method. To demonstrate the robustness of our algorithm, we test

the proposed TSWEU on real stripe remote sensing images,
7) Mixed Noise: Random noise usually coexists with the as shown in Fig. 15. We have chosen four representative

stripe in the remote sensing images. Previous methods always nonperiodical stripe images of the push-broom-based hyper-
rely on the spectral correlation of the multispectral images, spectral imaging system and three periodical stripe images of
while few works handle this problem from a single image. the cross track-based moderate resolution imaging system. It is
We can observe that the existing destriping methods may shown that the TSWEU has completely removed the stripe and
fail unexpectedly in the presence of random noise. There consistently achieved a visually pleasing quality for all cases,
are obvious residual stripes in the destriping results, such as whereas other competing methods may fail for certain cases.
the LRSID, UTV, and SLD in Fig. 14(e)–(g). Although the For example, the SLD has achieved very impressive destriping
WFAF and DLS-NUC have removed the stripe well, random results for the simulated stripes. However, for the real stripes
noise still remains in the results [see Fig. 14(d) and (h)]. For with nonrank 1, the performance of SLD decreases rapidly.
TSWEU, we have satisfactorily decoupled the clean image It is worth noting that all competing methods fail for the
[see Fig. 14(i)] and the mixed noise [see Fig. 14(j)]. random-length stripe in MODIS Terra band 33. Our method
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Fig. 13. Simulated destriping results for the oblique case. The first and second rows show the 146 and 56 stripe on the Cuprite band 10 and Terra band 31,
respectively. From the first to the last column, we show the original, the degrade, the destriping results of TLR and TSWEU, estimated stripe by TSWEU.

Fig. 14. Simulated destriping results for the mixed noise case. (a) Original MODIS Aqua band 22. (b) Degraded with mixed noise. Restoration results by
(c) TV, (d) WFAF, (e) LRSID, (f) UTV, (g) SLD, (h) DLS-NUC, and (i) TSWEU. (g) Estimated noise by TSWEU.

still works well in this case. Overall, the results of the proposed and TSWEU usually obtain the first and second best results.
method are consistent for all test images and exhibit good The ICV evaluation index could partially reflect the degree of
visual quality with fewer artifacts than those obtained by the stripe removal. ICV index is a reflection of the noise removal
compared methods. including both the stripe and random noise. It is worth noting
To further comprehensively evaluate the effectiveness of that the LRSID, TSWEU, and DLS-NUC could well handle

the proposed method on the real images, we introduce the random and stripe noise simultaneously, whereas other
the no-reference assessments: inverse coefficient of varia- WFAF, UTV, and SLD could only handle the stripe noise.
tion (ICV) [23] and mean relative deviation (MRD) [20]. Unfortunately, the random noise is ubiquitous, even sometimes
To reduce the bias, we compute the ICV and MRD five invisible to the naked eye. In summary, the MICV index means
times in different regions and report the mean ICVs and that the proposed TSWEU and LRSID have achieved better
MRDs as MICV and MMRD, respectively. The no-reference noise removal performance, largely due to stripe removal.
quantitative assessments are listed in Table V. We have two Second, the WFAF has mostly obtained the best MMRD
main observations. First, for the MICV index, the LRSID index. It is worth noting that the MRD is proportional to the
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Fig. 15. Real destriping results for various remote sensing images. (From left to right) Real degrade image, the destriping results of LRSID, UTV, SLD,
DLS-NUC, TSWEU. (From top to bottom) Hyperspectral image CHRIS band41, LakeMonona band105, MtStHelens band117, Urban band103, and the MODIS
image Terra band27, Terra band30, Terra band33.

difference between the destriping and stripe image. That is calculating windows. Otherwise, the more stripes you remove,
why the MRD index of the stripe image itself is zero. In fact, the worse index you obtain. Unfortunately, the stripes in the
this index is reasonable only when there is not any stripe on the HSI are everywhere, and the periodic in MODIS is exactly ten.
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Fig. 16. Effectiveness of the proposed method with single model for different
stripe noise types. (From left to right) Nonperiodical, periodical, random
length, and oblique stripe, respectively.

Fig. 18. Evaluation of destriping results of the proposed TSWEU on different
high-level tasks. From the first to the third rows, we show the image-level,
object level, and pixel-level task before and after destriping. (From left to
right) Original, striped, and the destriping images, respectively.

TABLE IVFig. 17. Generalization of the proposed method for various imaging systems.
(From left to right) IR, SPIM, and old film stripe images. ABLATION STUDY OF EACH TERM

That is the main reason why WFAF and SLD obtain better
MMRD, since there are obvious residual stripe in real images.

D. Discussion
1) Ablation Study: In this section, we study the effec-

tiveness of each term in our article as shown in Table IV.
We report the average PSNR/SSIM of each method on the a single hidden layer containing a finite number of neurons
simulated data sets of stripe noise between [ 20, 20]. We can can approximate continuous functions on compact subsets
observe that the UNet obtains much better performance than of Rn , under mild assumptions on the activation function.
that of the plain net. The skip connection promotes the Here, we show that our single model is robust to different
information propagation over a long distance and the down- stripe noise with different scenarios. In Fig. 16, we perform
sample/upsample operator that benefits enlarging the receptive an experiment to train one single model for different stripe
field work to facilitate improving the destriping performance categories with different remote sensing images. We train one
significantly. Moreover, the embedded residual blocks that single model on 60 000 images, where every 15 000 samples
promote the information propagation over a short distance are simulated for each kind of stripe. Here, we just select
help to improve the performance. Furthermore, the wavelet four kinds of stripes due to limitation of the GPU memory.
that replaces the conventional downsample/upsample opera- However, we think it is possible to use one single model for
tor with a lossless reconstruction slightly contributes to the all kinds of the stripes, which requires very large data set and
final performance. Lastly, the two-stream strategy obviously powerful computer. We can observe that the stripes have been
improves the SSIM. completely removed by single TSWEU model, which strongly
2) Single Model for Different Stripes: Explicitly modeling validates the effectiveness and robustness of TSWEU to any

the distributions of the complex stripe noises with different stripe noise and image scenario.
stripe categories and stripe intensity levels is extremely hard 3) Generalization for Other Imaging: To validate the gener-
for previous methods. Thanks to the universal approximation alization of the proposed method, we perform several destrip-
theorem [65] which states that a feed-forward network with ing experiments on various real stripe images. For each kind of
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Fig. 19. (a) Relationship among image size, running time, and the performance. (b) Relationship among image size and the performance. (c) Relationship
among image size and the running time.

with completely different stripes. The destriping results have
strongly supported the generalization ability of our model. The
reasons are twofold. First, the proposed model has actually
learned the intrinsic line pattern property of the stripes. It is
not a hard thing for CNN to extract the line pattern features
with low-dimensional manifold. Second, our TSWEU learns
not only the stripe but also the image. The learned natural
image shares the similar point, edge, profile features with the
other image, which could be well transferred to other images.
4) Effectiveness for High-Level Tasks: Considering the

destriping is a pre-processing for subsequent application,
we further demonstrate the effectiveness of the destriping
results on several high-level vision tasks. We comprehensively
evaluate the destriping results on image-level scene under-Fig. 20. Mean cross profile analysis. The horizontal axis means the column

number of the image, and the vertical axis denotes the mean intensity value standing, object-level detection, and pixel-level segmentationof the image. tasks, as shown in Fig. 18. We employ the Google Vision
API https://cloud.google.com/vision/ on the images before and
after destriping to perform the scene recognition. For the sceneTABLE V

QUANTITATIVE ASSESSMENT OF THE REAL STRIPE IMAGES. THE FIRST recognition, the stripes have brought negative influence on the
AND SECOND BEST RESULTS ARE MARKED BY THE RED AND BLUE recognition, where the API recognizes the Washington DC as

“Black-and-white,” “Pattern” to name a few. After the destrip-
ing by TSWEU, we can observe that the recognition labels
are highly consistent with that of the original image, such
as “Aerial Photography,” “Urban Area,” “Metropolis” with
similar confidence scores. For the object detection, we take the
DOTA [76] image as example. The stripe obviously reduces
the detection number (79) of small ship objects. After the
destriping by TSWEU, the number of the detected ship objects
(147) is even slightly higher than that of the original image
(145). For the segmentation, we use the unsupervised k-means
clustering method as semantic segmentation for the HSI Sali-

the images, the cause of the stripe and the imaging technique nas. The number of the class is five. The maximum iteration is
is totally different. Those test real image scenes and stripe set as ten times. The segmentation result of the stripe image is
categories are completely “unknown” to the training data set. completely false without any structural information. After the
In Fig. 17, the stripes in different images are completely destriping, the semantic segmentation result is meaningful and
different, such as the mixed noise in infrared image, multi- very similar to that of the original image. Overall, the proposed
plicative stripe in SPIM [75], and the sparse broken stripe TSWEU could significantly improve the performance of the
in old film documentary. The destriping results of TSWEU subsequent high-level vision tasks.
are visual pleasure without any residual stripe. Moreover, 5) Influence of Image Size: In this section, we analyze the
both the image edges and textures are well preserved. It is influence of the image size to the destriping performance
worth noting that our model is trained on the natural image, and the running time. Here, we set the image size from
and could be directly applied to those images without any 64 64 to 2048 2048 by making it two times larger each
re-training or other operations. Our TSWEU has achieved time. From Fig. 19(b), we can conclude that the image size
very impressive destriping results on those different images has a different influence on different methods. For example,
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with the increasing image size, the performance of the UTV [10] P. Rakwatin, W. Takeuchi, and Y. Yasuoka, “Stripe noise reduction in
gradually decreases. From Fig. 19(c), the running time of most
of the competing methods increases rapidly with the increasing
image size, such as the TV, UTV, VSNR, and LRSID, whereas
the running time of the TSWEU is almost constant. That is, our
method is very robust to the image size, which is an important
merit for large-sized remote sensing images.
6) Mean Cross-Profile Analysis: In this section, we analyze

the mean cross-profile of the destriping result, as shown
in Fig. 20. The mean cross-track profile of the destriping result
should be closer to that of the original image, where the abrupt
change (gray curve) in mean cross-track profile caused by the
stripe should be smoothed. To better visualize this, we just

MODIS data by combining histogram matching with facet filter,” IEEE
Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1844–1856, Jun. 2007.

[11] L. Gómez-Chova, L. Alonso, L. Guanter, G. Camps-Valls, J. Calpe,
and J. Moreno, “Correction of systematic spatial noise in push-broom
hyperspectral sensors: Application to CHRIS/PROBA images,” Appl.
Opt., vol. 47, no. 28, pp. F46–F60, 2008.

[12] P. Rakwatin, W. Takeuchi, and Y. Yasuoka, “Restoration of Aqua
MODIS band 6 using histogram matching and local least squares
fitting,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 2, pp. 613–627,
Feb. 2009.

[13] B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and
ring artifact removal with combined wavelet—Fourier filtering,” Opt.
Express, vol. 17, no. 10, pp. 8567–8591, Jan. 2009.

[14] Z. Wang, L. Chen, X. Gu, and T. Yu, “Destriping MODIS data based
on surface spectral correlation,” in Proc. IEEE Conf. IGRASS, Jul. 2008,
pp. 229–266.

select the row number between [180, 220]. We can observe [15] H.-S. Jung, J.-S. Won, M.-H. Kang, and Y.-W. Lee, “Detection andrestoration of defective lines in the SPOT 4 SWIR band,” IEEE Trans.that the destriping result of TSWEU (black curve) is much
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[16] R. Pande-Chhetri and A. Abd-Elrahman, “De-striping hyperspectral
imagery using wavelet transform and adaptive frequency domain filter-
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In this article, we formulate the single image destriping [17] I. Gladkova, M. D. Grossberg, F. Shahriar, G. Bonev, and P. Romanov,“Quantitative restoration for MODIS band 6 on aqua,” IEEE Trans.task as an image decomposition problem, where the stripe
component and image component are treated equally via a
two-stream CNN. The CNN is beneficial for representing the
stripe noise with more discriminative features via the external
data set. Moreover, we embed the wavelet into the CNN to
learn the internal directional property of the stripe better.
We also provide a comprehensive category of the remote
sensing stripes from their visual appearance. While previous
methods may be suitable for some of them, the proposed
method can well handle all of them due to the powerful
representation ability of the model. The proposed method has
been extensively verified on various simulated and real striped
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